

APPIICATIONS OF DISCRETE

OPTIMIZATION TECHNIQUES TO CAPITAL INVESTMENT AND NETWORK SYNTHESIS PROBLEMS

relipe Ochoa-Rosso

DEPARTMENT OF

CIVIL
ENGINEERING
SEARCH AND CH:OICE IN TRANSPORT SYSTEMS PLANNING
Volume III of a Series

Prepared in Cooperation with the M.I.T. Urban Systems Leborstory

June 1968
APPLICATIONS OF DISCRETE OPTIMIZATION TECHNIQUESTO CAPITAL INVESTMENTAND NETWORK SYNTHESIS PROBLEMS
byFelipe Ochoa-Rosso
Assistant: Professor of Civil Engineering (Visiting)
SEARCH AND CHOICE IN TRANSPORT SYSTEMS PLANNING
Volume III of a Series
Prepared in cooperation withthe M.I.T. Urban Systems LaboratorySponsored by the U.S. Department ofTransportation and the General Motors Grantfor Highway Transportation Research
Transportation Systems Division Department of Civil Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139
June, 1968

ABSTRACT

The purpose of this work is to formulate and solve certain optimization problems arising in the fields of engineering economics, scarce resource allocation, and transportation systems planning.

The scope and structure of optimization theory is presented in order to place subsequent work in proper perspective. A branch and bound algorithm is rigorously developed which can be applied to the optimization problems of interest. A rounding operation is defined, which provides a powerful rejection rule and permits the calculation, at each stage of the solution process, of an upper bound and a feasible solution in addition to the usual lower bound. This double bounding technique implies little ir no extra computational effort.

Subsequent chapters are devoted to the study of various cases of capital investment problems. Investment in sets of independent projec: is considered first. For the ($0-1$) multi-dimensional knapsack problem a new formulation, interpreted as a network synthesis protlem on a bipartite graph, is given. This formulation permits the straightforward application of the branch and bound algorithin, and allows the solution of the linear program associated with each node of the solution tree to be obtained by inspection.

This study is pursued by considering capital investment in a single time period as a special case of the previous problem. Certain economic interpretations are derived by investigating the dual program of the discrete knapsack problem. A parametric branch and bound method is developed which permits the solution of the knapsack problem for a range of values of the budget ceiling.

Two formulations are proposed for a special case of deferred capital investments, referred to as the multi-knapsack problem. The first formuiation, after a transformation by means of a model equivalent, leads to a branch and bound algorithm which requires the solution of a standard transportation protlem with surplus and deficits and certain routes prohibited at each step of the algorithm. The second model, although it may require a larger tree before optimality is reashed, permits the solution by inspection of the linear program associated with each node of the solution tree.

The final part of this thesis studias capital investment for dependent proposals in the context of urban transportation planning. The branch and bound algorithm is adapted to the link addition network design problem, where a descriptive traffic assignment model is employed.

Finally, foi the multistage link-addition network synthesis problem, a normative model is formulated as a block-angular mixed-integer linear program. A partitioning technique is employed to take advantage of the highly-structured form of the model.

We conclude with a detailed presentation of the partitioning technique of Benders, as applied to doth continuous and mixed-integer prograrming problems presenting a block-angular structure.

ACKNOWLEDGEMENT

This report is essentially a reproduction of the thesis which was submitted by the author in January 1968 in partial fulfillment of the requirements for the degree of Doctor of Science.

The ajthor wishes to thank the Banco de Mexiso, S. A. for their financial assistance during his first two years at M.I.T., and to the Club Rotario de la Ciudad de México for their financial support during the academic year 1964-1965.

This report is part of a series in a program of research into the process of transportation systems planning. Additional support for preparation and reproduction was provided by the U.S. Department of Transportation, Cffice of Systems Analysis, through contract 7-35140 (DSR 70386), the General Motors Grant for Highway Transportation Research (DSR 70065) ; and by the Ford Foundation through a grant to the Urban Systems Laboratory of M.I.T. The support of these agencies is gratefully acknowledged.

To Professor Alan Hershdorfer, his thesis supervisor, he is particularly indebted for initiating and stimulating his interest in the research : A teaching of optimization theory.

The author is grateful to Professor C. L. Miller, Head of the M.I.T. Department of Civil Engineering, and Professor Daniel Roos, Director of the Civil Engineering Systems Laboratory, for allowing him to devote a great portion of his time to this thesis during the past year.

A very special thank you goes to his friend and colleague David K. Bivins for his valuable comments and his excellent job in editing this thesis.

Thanks to Mrs. Linda Frechette's most accurate and enthusiastic typing this work was produced.

A very heartfe?t thank you is extended to the author's faliily and his wife's for their constant encouragement during his graduate work at M.I.T.

To his wife Sandy, he dedicates this work in de, est gratitude for her continuing support and optimism in helping to make it a reality.
CHAPTER 1. FUNDAMENTAL CONCEPTS OF OPTIMIZATION THEORY
1.1 Introduction 1
1.2 The Optimization Problem 1
1.3 Optimization Theory. The Nature of the Optimization Probleni 2
1.4 Solution Process 3
1.5 Problem Definition 3
1.6 Formulation of a Mathematical Model 4
1.7 Solution Techniques 8
1.8 Selection of a Method 9
1.9 Enyineering Systems Optimization 12
1.10 Notes to Chapter 1 14
CHAPTER I1. A BRANCH: AND BOUND ALGORITHM FOR A CLASS OF DISCRETE OPTIMIZATION PROBLEMS
2.1 Introductory Remar':s 15
2.2 Mathematical Formulation for the Class of Problems 16
2.3 The Directed Tree 17
2.4 Branch and Bound Operations 18
2.5 Specification of the Algorithm 25
2.6 Notes to Chapter II 27
CHAPTER III CAPITAL INVESTMENT ON INDEPENDENT PROJECTS
3.1 The Capital Alloca:ion Problem 29
3.2 The Various Cases of Investment Decisions 31
3.3 The Multiperiod Capital Investment Froblem 32
3.4 Development of a Solution Method 36
3.5 The Alixillary Problem and its Subalgorithm 37
3.5 The Bianch and Bound Algorithm 40
3.7 Solution of an Example Problem 42
3.8 Notes to Chapter 111 47
CHAPTER IV jiNĞle stage INVESTMENT: THE :NAPSACK PROBLEM
4.1 The 0.1) Knapidik Problem 49
4.2 Esonom': interpretation of the Dual Linear Program 50
4.3 The Dual of the Dissrete Program 53
4.4 Soiution of the Knapsaik Problem 59
4.5 A P_{x} aflet \cdot : inin and Bound Algorithm for the Knapsa:k frob'em 63
4.6 Statement of the A^{*} gorithm 67
4.7 Solution of an Example Problem 69
4.8 Summary 72
4.9 Notes to Chapter iv 74
CHAPTER V. MULTISTAGE RESOURCE ALLOCATION MODELS
5.1 Introduction 75
5.2 Multistage Capital Allocation Models 76
5.3 The Mu!ti-knapsack Problem. An Equivalent Model 77
5.4 Development of a Solution Method 80
5.5 The Auxiliary Problem and its Subalgorithm 82
5.6 Alternative Formulation for the Multi-knapsack Problem 84
5.7 Optimal Allocation of Programs to Primary Memory 86
5.8 Notes to Chapter V 88
CHAPTER VI THE MULTISTAGE NETWORK DESIGN PROBLEM
6.1 Introducion 89
6.2 The Urbon Transportation Planning Process 90
6.3 Transportation Arialysis 92
6.4 The Irattic Assignment Probiem 93
6.5 Transportation Network Imorovements 95
6.6 Network Synthesis Via Descriptive Models 96
6.7 iletwork Synthes is Vid Normative Models 99
6.8 Network Improvements Over ilme 101
6.9 Analytical Fommiation 102
6. 10 Struciural Characteristics of the Model 106
6.11 Solution Method by Partitioning 107
8.12 Notes to Cnspter $1 / 1$ 110
APPENDIX A. THE DECOMPOSITION PRINCIPLE FOR MIXED-VARIABLE PROGRAMS
A. 1 Introduction A-1
A. 2 Problem Formulation. Derivation of an Equivalent Program A-1
A. 3 The Case there S_{0} Is the Non-negative Orthant A-6
A. 4 Exiension to the Case Where the S_{j} Are Not All Bounded A-8
A. 5 The Partitioning Algorit'im of Benders A-9
A. 6 The Case where S_{0} Is the Set of Vertices of the Unit Hypercube A-11
A. 7 Solution of an Example Problem A-13
A. 8 Notes t:Appendix A A-18
APPENDIX B. HISTORICAL SURVEY OF OPTIMIZATION THEORY
B. 1 Early Developnents B-1
B. 2 Classical Period B-2
B. 3 Modern Period. First Decad? B-4
B. 4 Modern Period. Secord Decade B-6
B. 5 i:iture Research B-8
B. 6 Notes to Appendix B B-10
BIOGRAPHICAL NOTE

CHAPTER I

FUNDAMENTAL CONCEPTS OF OPTIMIZATION THEORY

1.1 INTRODUCTION

The goal of this chapter is to formailize the concepts relevant to describing the nature and scope of optimization thaory. We begin by defining the optimization problem and discussing its complex nature. Ke identify the fundamental steps in the solution process of optimization problems as: i) problem definition, ii) fomatation of an optimization model, iti) selection of a solution method, and iv) application of the solution method. Each step of the process and its implications is discussed in detail for a variety of applications.

A classification of optimization models and of solution methods is presented. The material covered in this chapter and a historical survey of optimization theory (cf. Appendix B) are intended to present a general framework of the theory which will be applied in the inain body of this work to specific types of optimization problems. Finally, we shall discuss some important aspects of optimization in the context of analysis and design of engineering systems.

1.2 THE OPTIMIZATION PROBLEM

Whenever an engineer or decision maker is confronted with the problem of selecting a course of action from a set of alternatives he will be compelled to choose, from the available alternatives, the best in terms of a certain predetermined goal or set of goals relevant to the nature of the prúslem.

It is assumed that the degree to which the goal or objective of the problem is reached for each alternative course of action can be evaluated by a quantitative method. In other words, a measure of the utility of each

Course of action may be obtained, allowing the decision maker to select the alternative yielding the maximum utility. The degree to which the goal is obtained is the figure of merit for a particular solution.

DEFINITION. An optimization problem is defined as the one oi selecting among a set of various alternatives (possibly infinite) of a certain problem, the one for which a given figure of merit is optimized (i.e., maximized or minimized).

1.3 OPTIMIZATION THEORY. THE NATURE OF THE OPTIMIZATION PROBLEM

The nature of optimization problems is often quite complex, and a wide variety of cases presenting different characteristics is encountered in practical problems. To visualize the complexity which may be present in the nature of the problem, consider the following examples: i) a decision maker may be confronted with a problem having a clearly-defined objective to optimize; however, the problem may or may not be subject to a set of constraints. He may also have to consider the solution to the problem on the assumption of either deterministic or stochastic behavior.
ii) the deciston maker may have to interact and compete with other participants, each of whom is attempting to make decisions which optimize his own figure of merit. (ii) several decisions may have to be made on a multistage problem, where the goal sought is a long-range optimization as opposed to suboptimization of a particular stage of the problem.
lt is this complex nature as well as the different structural characteristics of the models (cf. Section 1.6) that clearly indicate the need for a variety of techn!ques to cope with the solution of optimization problems. The set of all these techniques, namely those included under the specific names of mathematical programning, gone theory, statistical decision theony, dynaric programing, control theory, calculus of variations, etc., constitute with their theoretical foundations the general theory of optimization.

Optimization theory in its widest sense is the unified branch of mathematical analysis that provides a formal approach to the solution of optimization problems.

1.4 SOLUTION PROCESS

The solution process for optimization problems may not be \{dentical in all cases and may differ depending on the special nature of the problem; nonetheless it will always be possible to distinguish in the process the basic steps indicated in Fig. 1-1. The various loops indicate possible revision of the previous decision.

Fig. 1-1. Optimization Problem Solution Process

1.5 PROBLEM DEFINITION

At the problem definition stage the decision or control variables governing the problem are ldentified, and the form of interactions among the variables is specified. A rigure of merit must be defined in terms
of the relevant control variables and the range of variation of the controls must be explicitly or implicitly specified. Finally, the constraints to be satisfied by the variablet must also be established.

1.6 FORMULATION OF A MATHEMATICAL MODEL

Once the problem has been properiy defined, the subsequent step will be to formulate an abstract model (usualiy a mathematical model), that faithfully represents the essential structure of the problem and that may be amenable to solution through application of a well-known procedure. Whenever reference is made to models it will be understood in the sense of Karlin*, "a model is a suitable abstraction of reality preservisig the essential structure of the problem in such a way thet its analysis affords insight into both the original concrete situation and other situations which have the same formal structure".

It is slear that solution of the model will produce accurate results only to the extent that the model is representative of the original problem. If the problem has not been properly modeled, its solution may lead to dubious results or completely erroneous ones; for instance, consider the case of a linear programing model giving an unbounded solution as a result of a constraint of the problem not being included in the model.

We shall now analyze some distinctive characteristics of optimization models that will permit their convenient classification. This will be useful for further identification of the mooels that will be encountered in subsequent chapters.

We shall distinguish three main components of an optimization model: 1) the set of problem variables, ii) the figure of merit to be optinized, ii) the domain of definition of the problem variables (determined by the constraints of the problem). The optimal solution for certain classes of optimizarion probiems consists of numerical values taken by the probien variables, satisfying the constraints and simultaneously opitimizin the figure of merit. Other classes of optimization ruolems seek to fi da

[^0]curve or function (variational problems), that satisfies a set of constraints and renders optimal a certain functional expression of the set of feasible solut:on curves.

For certain problems the sbjective will be anenable to a closed form mathematical representation as a function of the control variables. For other problems this closed representation might not be obtainable, and the figure of merit for a 9 ? ven set of values of the control variables may only be known after a complex process has been completed (such as a simulation process, an engineer:ng andlysis, the solution of an elaborate computer program, or a table look-up).

Furthermore, the prublem may be constrdined or anconstrained. For constrained problems capable of formulation in a closed form mathematical representation, the nature of the constraint expressions may be quite diverse. For instance they may be algebraic or transcendent expressions, equalities or inequalities, linear or nonlinear with the domain of the variables being a discrete set or the continuum. Also some of the constraints may be differential equations or definite integrals.

In the light of the above discussion we have developed the treestructured classification of optimization niodels illustrated in Fig. 1-2. The tree obviously may be expanded in both the vertical and horizontal directions to make it as complete as is needed or desired.

We shall be atle to distinguish certain branches of the tree, representing specitic classes of problems, for which the solution procedures forin a well-established mathumatical development. Fcr instance, models in the constrained optimization branch fer which both the constraints and objective may be represented in closed algebraic form constitute that part of optimization theory generally known as mathematical pregrommeng.

As a second example, corisider the class of problems for which the explicit objective function is expressed by a definite integral (functional objective) with or without subs?diary conditions. The solution of such models fälls with in the scope of the clusscal calculus of variations.

Finally, consider those models with constraints and/or objective lacking a closed mathematical representation The optimization of such models must be attained by any means short of urute force; the techniques usually applied fall under the general name of direct search methods.

7

An example of this class would be a certain stochastic process (e.g. a waiting line, a given renewal process) being analyzed by means of a costly computer smulation. The input parameters may be varied and the simulation executed tor each set of values. Associated with the output of each run, a measure of effectiveness (MOE), of the corresponding input parameters may be estimated. If the problem is to select the input parameters that op:imize the MOE, a direct search techn que is required in this case to find the oprimum while minimizing the number of s:mulated trials.

1.7 SOLUTION TECHNIQUES

solution techniques are the procedures and algorithms devised for the solution of optimization problems. The actual solution usually entails detemination of numerical values of the control variables and the optimum value of the figure of merit.

Optimization methods are usually broken down into two major categories: indirect and direct methow. With direct methods, the optimum solution is sought by directly calculating values of the objective function at different points of the feasible domain. The values thus obtained are compared and, by means of an a xiliary criterion, a new point is next analyzed which hopefully will imprute the value of the objective function.

Alternatively, indirect methods look for a set of values of the control variables that satisfy known necessary condit:ons for optimality. The classical method of the differential id'culus is an example of the indirect type. In effect, values of the vaiables are sought for which the first der:vatives of the objective function vanish, provided that continuity of the function and existence of derivatives in the region of interest are guaranteed in this way, the optimization proslem has been transformed into a root-finding problem.

The Simplex algorithm of linear programing exhibits features of both the direct and indirect methods It performs a direct search over extreme points of the teas:ble domain only (points satisfying the necessary condition for an optimum) in such a way that the objective function is at least as good as in the previous step. Finaliy, the opt imum among the set
of extreme points is detected when the indirect criterion of feasibility of the complementary solution to the asjociated dual problem is satisfied. For certain mathematica: models of optimization, a solution method may include transforming the or ginal model ints an equivalent one that promises to be more iractable than the former (cf. Chapters III and IV). Consider the methodology of gemetruc pregrommeng*: in this case, the polynomial optimization is formulated in terms of its dua! problem and this is the model that is actually solved. Another example is the transformation into a linear prug zmaing probiem of a separable nonlinear program.

Direct techn!ques may be subdivided into two major groups: símultaneouc ard sequent al methods. Simultanejus search tecnniques calculate values of the objective function or response surface at a set of points determined a phione by a certain search strategy. Sequential search methods, on the other hand, deal with sequential examination of trial solutions, basing the location of subsequent trials on the results of earlier ones. We present in Fig. 1-3 a subset of representative solution techniques for each one of the classes of methods discussed in this section.

1.8 SELECTION OF A METHOD

The selection of a convenient solution method for a given problem depends on the type of model employed, the existing solution techniques for that particular model, and the computation facilities avallable to the erigineer-analyst.

In the selection process one may consider such factors as linearities of the model, number of variables, number of constrairits, special struetures, separability or weak-coupling of variables in constraints and/or objective, objective or constraint surfaces of readily interpreted geometric character, etc

The final selection of a well-suited method for a particular problem depends then on the detalled properties of the model as well as the solution techniques that form part of a software package of an availabie computer installation.

[^1]

FIG. 1-3 Classification of Solution Methods

We have just presented a brief review of some classes of optimization problens, the mathematical rodels applicable to these problems, and the methods available for their solution. To place the developments of optimization theory in proper perspective, the reader is referred to Appendix B for a survey of the most significant contributions of different mathematicians through the centuries.

In the following section we shall discuss concepts relevant to engineering systems optimization, as a framework for the class of problems undertaken in the main body of the text.

1.9 ENGINEERING SYSTEMS OPTIMIZATICN

The engineer uses analytical and experimental methods to analyze and interpret the behavior of the physical workd in such a way that appropriate decisions can be made regarding investment of scarce resources for the development of facilities of economic utility.

In general, the engineer seeks a design which satisfies a certain specified performance of the facility in an economical manner. The meaning of econamical is subject to various interpretations. It may mean a least cost design including both construction and operating costs. On the other hand, one may seek a design yielding the highest level of performance consistent with the given construction and operating budgets; one may also mix these extreme cases.

With this in mind, we can view the task of the engineer as that of providing the best solution to the problem as described; therefore, the engineer confronts an optimization problem in the sense discussed in previous sections.

From the practical, computational point of view, the majority of engineering system design problens are sufficiently complex that one car-not provide a mathematical model for the entire problem which could be solved by one of the solution techniques indicated previous?y.

However, any engineering system design problem is defined in terms of a set of boundaries which delineate the range of the systems of interest. These boundaries represent an artitrary but presumably reasonable separation of the system under consideration from other systems in which it is
imbedded. Hence, the design prublem can be viewed as a suboptimization of a set of subsystems, the union of which compose the system of interest.

Therefore, it seems perfectly natural to fragment, an engineering system design problem into components, some of ishich may be sufficiently limited as to penmit the application of optimizat:on techniques. It is eviderit that the set of optimum solutions to the selected components will not in general constitute an optimum to the or ginal system but simply a suboptimal solution.

The traditiona? process for solving an engineering system design problem usually takes the form of a trial and error procedure. However, in those cases wiere sjst ins : "ipruolems are su.:esz: al subjected to mathematical opt:mizat; on techniques, the engineer-analyst draws bourdaries about the fragment of the design problem so that a closed form mathematical representation of the system is obtained. Known optimization techniques are then applied to this representation or model, and an optimal solution to the design problem is calculated,

When it is possible to isolate a system fragment of significant physical extensiveness and calculate its optimum design by a convergent process, we say that a synth'sis algorithm exists for the design of the system.

While it may not be possible to isolate a section of a design problem such that its optimization may be termed a synthesic procedure, one expects to find parts of eng ineering design problems whose solutions will be small-scale optimizations. The solution of these small-scale cptimizations which occur as parts of the total system w:ll be of special interest in the incremental process of developing a total synthesis algorithm

Throughour this work we shall be concerned with exploring parts of engineering design problems, the solution of which may be solved by known optimization techniques. The first part of the material covers optimal allocation of capital resources to a finte set of facilities. Problems involving synthesis of transportation networks will be developed in the remaining parts of the work.

1.10 NOTES TO CHAPTER 1

[1] Balinski, M. L., "Integer Prograrming: Method, Uses, Computation", Management Science, Vol. 12, No. 3, Noverber 1965, pp. 255-264.
[2] Wolfe, P 'The Simplex Method for Quadratic Programming", Econometrica, Vol. 27, 1959, pp. 382-398.
[3] Kelley, J. E., Jr., "The Cutting Plane Method for Solving Convex Programs", J. SIAM, Vol. 8, December 1960, pp. 703-712.
[4] Zoutendijk, G., Methods of Feasible Direstions, Eisevier Publishing Co., Amsterdam, 1960.
[5] Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the Sequentiai Unconstrained Minimization Technique for Nonlinear Progranming", Management Science, Vol. 10, 1964, pp. 601-617.
[6] Wilde, D. J. and C. S. Beightler, Foundutions of Optimization, Prentice-Hall, Inc., Englewcod Cliffs, New Jersey, 1967.
[7] Brocks, S. H., "A Discussion of Random Methods for Seeking Maxima", Operations Research, Vol. 6, 1958, pp. 244-251.
[8] Beman, G., "Minimization by Successivi Approximation", J. SIAM Nem. Anal., Vol. 3, 1968, pp. 123-133.
[9] Hadley, G., Non Linear and Dynamic Programing, Addison-Wesley Pubilishing Company, Inc., Reading, Massachusetts, 1964, Ch. 9.
[10] Shah, B. V., R. J. Buehler, and O. Kempthorne, "Some Algorithms for Minimizing a function of Several Variables": J. SIAM, Vol. 12, March 1964, pp. 74-92.
[11] Hooke, R. and T. A. Jeeves, "'Direct Search' Solution of Numerical and Statistical Prob;ens", J. Assn. Comp. Mach., Vol. 8, Aprii 1961, pp. 2!2-229.
[12] Spendley, N., G. R. Hext, and F. R. Himsworth, "Sequential Application of Simplex Design in Optimization and Evolutionary Operations", Technometrics, Vo1. 4, Noveniber, 1962, pp. 441-459.

CHAPTER II

A BRANCH AND BOUND ALGORITHM FOR A CLASS OF DISCRETE OPTIMIZATION PROBLEMS

2.1 INTRODUCTORY REMARKS

Branch and bound algorithms, a class of sclution methods for integer programing problems, have been extensively studied since the first procedure of this class, offering a new and fresh approach to the solution of ccmbinatorial problems, was published by Land and Doiy [1] in 1960.

The name branch and hound is due to Little et al. [2]. These authors successfuly employed a technique in this class to obtain a solution to the traveling saleman problem which was substantially more efficient than solutions previously available. This result encouraged further inyestigation into the applicability of this technique. Improvements of existing methods were carriad out by Dakin [3] and Driebeek [4], and further applications are due to Ignall and Schrage [5] on the job scheduling problem, to Efroymson and Ray [6] on a plant location problem, Hershdorfer et al. [12] on the assignnent of numbers to rodes of a tree-dimensional grid so that the bandwidth of the associated node-node incidence matrix is minimized, and to Gavett and Plyter [7] on the optimal assignment of facilities to locations. A survey on the state of the art $4 F$ to 1966 may be found in the work of Lawler and Wood [9].

Various formalizations of the general class of branch and bound methods have been undertaken by Agin [8], Lawler and Wood [9], Roy, Nghiem, and Bertier [10] and others. Most recently Ichbiah [11] generalized the work of Roy, et al. and developed a parametric branch and bound technique.

In subsequent chapters we shall study various optimization problems arising in the fields of iransportation systems analysis and design, and caplial budgeting for independent and dependent projects. These problems
will be mathematically fomulated as discrete-bivalent programing problems (i.e., one in which a pair of feasible values is specified for each member of a subset of problem variables). These problems arise in apparently independent areas but it is possible to develop mathematical models for these problems, which in fact are closely related. These models can all be solved by a branch and bound technique of the Land and Doig type requiring the solution of network flow or transportation type problems at each step of the iterative procedure.

Since each of the problems we shall consider is solved by a variant of our branch and bound technique, this chapter presents the general formulation of this method as a basis for the particular applications.

The problems that we shall study share the characteristic that a feas:ble solution car be obtained with little or no compuitational effort at every stage of the algorithm. Associated with this property is a means for deyeloping both an upper and a lower bound to the objective function at each stage of the procedure. This double hounding technique leads to a reduction of the search space and to an increase in the efficiency of the solution technique.

The next section describes the mathematical structure associated with our class of problems, and subsequent sections describe the common elements of the solution technigue and prove its validity and finite convergence.

2.2 MATHEMAYICAL FORMULATION FOR THE CLASS OF PROBLEMS

Let \underline{x} denote a vectur in E^{n} and S_{1} a closed and bounded convex set with boundaries defined by hyperplanes in E^{n}. Let T_{1} be a finite nonempty set of vectors in the same space, and denote by Ω_{1} a finite subset of S_{1} obtained by the intersection of S_{1} and $T_{1}=\Omega_{1}=S_{1} \cap T_{1}$.

Consiver the following discrete optimization problem the solution of which is to be obtained.

where f is a single-valued function of \underline{x}.

DEFINITION. Let us denote by A_{j} the j 'th auxiliary continuous problem, dertved from P as follows:

$$
\begin{array}{rll}
A_{j}: & \text { Determine } & \underline{x}^{*}(j) \text { and } z^{*}(j) \text { so as to } \\
& \text { Minimize } z(j)=f(\underline{x}) \\
& \text { Subject to } \underline{x} \varepsilon S_{j}, j=1,2, \ldots
\end{array}
$$

For $j=1, S_{1}$ is given and for $j>1, S_{j}$ is a subset of S_{p} to be defined in section 2.4. We shall assume that a finite algoritim, to be called after Dakin [3], the sub-algoritho, exists for solution of problem A_{j}. Furthermore, it is assumed that a feasible solution to problem P may be determined, for each j, by "simple inspection" of the solution to problem A_{j}. This solution will be denoted by $\underline{\chi}(j)$, 今((j). The "inspection" to be performed on the optimum solution to A_{j} to obtain a feasible solution to P will be called a rounding operation.

2.3 THE DIRECTED TREE

The branch and bound algorithm for solution of problem P, to be set forth in section 2.5, is an iterative technique that may be interpreted as the generation of a directed tree: $T(i)=[N(i), A(i)]$, where $N(i)$ and $A(1)$ are respectively the set of nodes and the set of directed arcs at the end of iteration i. At each iteration, except for the first one during which only the root node of the tree is created, two new directed arcs and nodes will be added to the sets N and A.

Associated with each node $j \in N(i)$ are a subset Ω_{j} of Ω_{1} and a subset S_{j} of S_{j}, and associated with each $\operatorname{arc}(j, k) \in A(i)$ is a set $V_{j k}$ (cf. Section 2.4).

At the end of the 1 'th iteration, the sub.et of $N(i)$ corresponding to the terminal nodes of the tree wiil be denoted by $C(1)$. The set $C(1)$ will be partitioned further in:o three subsets, $F(i): E(1)$ and $R(1)$ such that $F \cup E \cup R=C$. Set F will be called the set of feasible or active nodes, E the set of infreasible or excluded nodes, and R the set of rejected nodes.

The algorithm storts by generating the root of the tree, node 1 , associating S_{1} to it and solving A_{1}. From then on, and in an iterative
fashion, bifurcating arcs and their corresponding nodes are added to the tree according to a branching operation. These directed arcs have as origin a conveniently selected node from $F(i)$. For each node j thus created, the values $\underline{x}^{*}(j), z^{*}(j)$ and $\underline{\underline{x}}(j), \hat{z}(j)$ are obtained by solving the auxiliary problem A_{j} and applying a rounding operation to its optimal solution.

This iterative procedure teminates when the solution to the original problem P, or sufficient evidence of the existence of no solution, has been obtained. This evidence is given by the operations of bounding, exclusion and rejection (to be defined), in condunction with the branching. and munding operations mentioned above.

2.4 BRANCH AND BOUND OPERATIONS

DEFINITION 1. Brancining Operation. Let Ω_{j}, a non-empty subset of Ω_{1} (if $\Omega_{j}=\Phi$, no branching operation will take place, see Definition 3), and $S_{j} \subset S_{1}$ be the sets associated with node j. The branching operation is defined by a partition of Ω_{j} into two subsets Ω_{r} and Ω_{r+1} such that:

$$
\begin{align*}
& \Omega_{r} \cup \Omega_{r+1}=\Omega_{j} \tag{2.1}\\
& \Omega_{r} \cap \Omega_{r+1}=\Phi \tag{2.2}
\end{align*}
$$

where is the empty set. This partition is achieved by creating two directed arcs (j, r) and ($j, r+1$) emanating from node j with associated sets $v_{j, r}$ and $y_{j, r+1}$ and two nodes r and $r+1$ with associatec sets Ω_{r} and Ω_{r+1} such that:

$$
\begin{align*}
& \Omega_{j} \cap v_{j, r}=\Omega_{r} \tag{2.3}\\
& \Omega_{j} \cap v_{j, r+1}=\Omega_{r+1}
\end{align*}
$$

We observe the following thecrem which characterizes $v_{j, r}$ and $v_{j, r+1}$:

THEOREM 2.1 Given Ω_{j}, sufficient conditions for $V_{j, r}$ and $V_{j, r+1}$ to define a partitioning satisfying (2.1) and (2.2) aic:

$$
\begin{align*}
& v_{j, r} \cap v_{j, r+1}=\Phi \tag{2.4}\\
& \Omega_{j} \subseteq\left(v_{j, r} \cup v_{j, r+1}\right) \tag{2.5}
\end{align*}
$$

Proof: Assume that (2.4) and (2.5) hold; then by intersecting both sides. of (2.4) with Ω_{j} we obtain

$$
\Omega_{j} \cap\left(v_{j, r} \cap v_{j}{ }^{\prime} r+1\right)=\Omega_{j} \cap \Phi
$$

and since the intersection of sets is distributive

$$
\left(\Omega_{j} \cap v_{j, r}\right) \cap\left(\Omega_{j} \cap v_{j, r+1}\right)=\varnothing
$$

Hence from (2.3) $\quad \Omega_{r} \cap \Omega_{r+1}=\Phi$
Finally (2.5) is equivalent to

$$
\begin{gathered}
\Omega_{j} \cap\left(v_{j, r} \cup v_{j, r+1}\right)=\Omega_{j} \\
\text { or } \quad\left(\Omega_{j} \cap v_{j, r}\right) \cup\left(\Omega_{j} \cap v_{j, r+1}\right)=\Omega_{j}
\end{gathered}
$$

Hence, from (2.3) $\Omega_{r} \cup \Omega_{r+1}=\Omega_{j}$. This completes the proof.
Next we associate to nodes r and $r+1$ the subsets S_{r} and S_{r+1}, defined as follows:

$$
\begin{align*}
& s_{r}=s_{j} \cap v_{j, r} \tag{2.6}\\
& s_{r+1}=s_{j} \cap v_{j, r+1}
\end{align*}
$$

From the results of lerma 2.1 below, Ω_{j} is a subset of S_{j}. We observe
that only the following condition is satisfied for S_{r} and S_{r+1} :

$$
\begin{equation*}
s_{r} \cap s_{r+1}=\Phi \tag{2.7}
\end{equation*}
$$

That is, the sets S_{r} and S_{r+1} are mutually exclusive although they may not be collectively exhaustive of S_{j}.

After a finite number of branching operations have been performed, we may expect to have generated nodes t for which Ω_{t} has been reduced to a single element of the original domain Ω_{1}. It is also expected that the corresponding S_{t} is reduced to contain exciusively the same single element, so that $\Omega_{t} \equiv s_{t}$. We observe that this is possible for Ω_{t} since, by hypothesis, Ω_{1} is finite; but this s not so for S_{t}, since S_{1} is infinite. Hence, in order to guarantee that eventually $\Omega_{t} \equiv S_{t}$ we have to restrict iurther the sets $V_{j, r}$ and $v_{j, r+1}$ in the following way: it is assumed that the sets $V_{j, r}$ and $V_{j, r+1}$ are such that in a finite number of branching operations, nodes with Ω_{t} containing one single element have an associated S_{t} containing only the same single element. In the case of the particular applications considered in the present work, this is a relatively simple condition to satisfy. Finally, to initialize and make possible the branching operation, the sets Ω_{1} and S_{1} are assigned to the root node of the solution tree.

LEMMA 2.1 Let Ω_{r} and S_{r} be the sets associated with node r of $T(i)$. Then Ω_{r} is a subset of S_{r}.

Proof: By induction. In effect, for $r=1, \Omega_{1} \subset S_{1}$ by hypothesis. Let us assume that for node $j, \Omega_{j} \subseteq S_{j}$ is satisfied. Then letting r be the irmediate successor of j and by iniersecting each side of (2.3) and (2.6) we have

$$
\Omega_{r} \cap s_{r}=\left(\Omega \cap s_{j}\right) \cap v_{j, r}
$$

But from the previous assumption, $\Omega_{j} \cap s_{j}=\Omega_{j}$ and therefore

$$
\Omega_{r} \cap s_{r}=\Omega_{j} \cap v_{j, r}
$$

Or using (2,3), $\Omega_{r} \cap s_{r}=\Omega_{r}$, or equivalently $\Omega_{r} \subseteq s_{r}$, which completes the proof.

Note that for a terminal node $j=t$ with S_{t} containing a single element \underline{x} such that $\underline{x} \varepsilon \Omega_{?}$, then $\Omega_{t} \equiv S_{t}$

DEFINITION 2. Bounding operation. Given the current set $F(i)$ of active nodes, the bounding operation will be defined by means of the following actions:
a) Lower bounding operation. This consists of selecting the node $k \in F(i)$ such that

$$
\begin{equation*}
z^{*}(k)=\min _{j \equiv F(i)}\left\{z^{*}(j)\right\} \tag{2.8}
\end{equation*}
$$

and of setting the value L_{i}, the current iower bound for problem p, equal to the value given by (2.8):

$$
\begin{equation*}
L_{i}=z^{*}(k) \tag{2.9}
\end{equation*}
$$

Node k is sald to be the bounded node for iteration i, defining the node from which branching will take place at the next iteration.
b) Upper bounding operation. This consists of finding the value

$$
\begin{equation*}
\hat{z}(s)=\min _{j f F(i)}\{\hat{z}(j)\} \tag{2,10}
\end{equation*}
$$

which constitutes the current least upper bound of the problem, and of setting the value U, equal to the value given by (2, 10):

$$
\begin{equation*}
U_{1}=\dot{z}(s) \tag{2.11}
\end{equation*}
$$

Expressions (2.9) and (2 11) constitute, respectively, the best lowsr and upper bounds of the problem at the end of the i'th iteration. This statement will be surstantiated by means of the following lemmas.

LEMMA 2.2 If node j is the inmediate predecessor of r then

$$
z^{*}(j) \leq z^{*}(r)
$$

Proof: If $\underline{x}^{*}(J)=\underline{x}^{*}(r)$ then 2^{*} ir) $=z^{*}(J)$ since both A_{r} and A_{j} share the same objective function. Otherwise, if $\underline{x}^{*}(J) \neq \underline{x}^{*}(r)$ and since $S_{r} \subset S_{j}$ due to the way the branching was defined, problem A_{r} is more restricted, and consequently $z^{*}(\mathrm{~J}) \leqq z^{\star}(r)$.

LEMMA 2.3 let k be the buunded node of iteration i with associated value L_{i} geven by $\{29\} \quad 1_{i} \underline{x}^{0}, 2^{0}$ is the optimal solution to P, then $L_{i} \leq 2^{0}$.

Proof: Let L_{i} and L_{i+1} be the values given by (2.9), associated with any two consecutive iterations From lemma 2.2 and since branching occurs from the last bounded node, it follows that $L_{i} \leq L_{i+1}$ and thus $L_{i} \leq L_{\ell}$. $\ell \geq 1$. Now assume that the process of branching continues until the entire tree has been developed at iteration $\ell=t$. The set $F(t)$ will contain all nodes associated with feasible solutions to P (guaranteed by branching operation). Then $L_{t}=\min _{j \varepsilon F(t)}\left[z^{*}(j)\right]=z^{0}$. Hence $L_{i} \leq L_{t}=z^{0}$, which completes the proof. $j \varepsilon F(t)$

From lemma 2.2 and the definition of bounding, we observe that at each iteration the bounding operation indeed gives a lower bound to problen P as indicated by lemma 2.3; and also a better lower bound, (closer to the optimum) than the previous iteration as asserted by lemma 2.2 and the fact that branching occurs froni the bounded node of the previous iteration.

LEMMA 2.4 if $\underline{\hat{x}}(\jmath), \hat{z}(j)$ as the feasible solution to problem P obtained from a rounding opeation at node J , then $\mathbf{2}^{0} \leq \hat{\mathbf{z}}(\mathrm{j})$.

Proof: if $\underline{\hat{x}}(j) \equiv \underline{x}^{0}$ it follows that $z^{0}-\hat{z}(j)$. Otherwise $\underline{\hat{x}}(j) \neq \underline{x}^{0}$, and since $\hat{\hat{x}}(J)$ is only a feasible solution to P, then $z^{0} \leq \hat{z}(j)$.

The rounding operation thus provides an upperbound on z^{0} at each node it is perfomed upon. Now, since at the end of iteration i the best lower bound corresponding to node k is L_{1}, and the best upper bound corresponding to node s is U, the following theorem results:

THEOREM 2.2. At any eteration, $L_{i} \leq U_{i}$ and if $L_{i}=U_{i}$, the optimal solution has been obtarned; it corresponds to the rounded solution of node s of the current etexation.

Proof: he first part is evident: from the definition of bounding and from iemmas 2.3 and 2.4 , it follows that $L_{1} \leq z^{0} \leq U_{i}$ and therefore $L_{i} \leq U_{i}$.

It remains to be proved that if $L_{i}=U_{i}$, node s is an optimum solution. Additional branching would make the lower bound greater than U_{i}; and since a feasible solution to P associated with node s has already been found, all other feasible solut ons to P rot yet discovered would yield no inprovement in z^{0} given by s. Consequently, the feasible solution to P associated with node s is the optimal.

DEFINITION 3. Exclusion. The exclusion operation is defined for a terminal node r of $C(i)$ for which the corresponding set Ω_{r} is empty. Since Ω_{r} is empty, no need exists to consider further branching from node r and, as part of the exclusion operation, the node is assigned to the set $E(i)$ of excluded nodes.

LEMMA 2.5 If the solution to A_{r} is infeasible, then $\Omega_{r}=\Phi$.

Proof: If A_{r} is infeasible, its domain of definition is empty: $S_{r}=\varnothing$. From lemma 2.1, s:nce $\Omega_{r} \mathcal{C}_{S_{r}}$, it follows that $\Omega_{r}=\Phi$.

DEFINITION 4. Rejection The rejection operation on node r consists of assigning the node to the set $R(1)$ of rejected nodes if the following condition is satisfied:

$$
z^{*}(r)>U_{1-1}
$$

LEMMA 2.6 I6 for node r at ctenatcon $1, z^{*}(r)$ is greater than the upperbound at the prevecus steratwi, no firther branchoig from a a necessary

Proof: Consider the following possilie cases:

1) $\underline{x}^{*}(r) \notin \Omega_{1}$ and $z^{*}(r)>U_{i-1}$: Since U_{i-i} is by definition an upperbound of the problem, it follows that Ω_{r} does not contain the optimum solution to P, and no further branching is required.

1i) $\underline{x}^{*}(r) \varepsilon \Omega_{1}$ and $z^{*}(r)>U_{i-1}$: Although node r is a feasible solution to P, the same argument as for case 1) holds.

DEFINITION 5. Rounding operation. Let $\underline{x}^{*}(j), z^{*}(j)$ be the solution to A_{j} associated $w i$ th node j. The rounding operation consists of obtaining from $\underline{x}^{*}(j), z^{*}(j)$ a filasible solution $\hat{\hat{x}}(j), \hat{z}(j)$ to problem f.

For the classes of problems considered throughout this work, unless otherwise indicated, this operaticn is possible by conveniently rounding off certain components of $\underline{x}^{*}(j)$. When tris operation is possible, the double bounding feature of the algorithm may be employed, thus resulting in an improved branch and bound method.

We note that if the operation is possible for each node j, then:
a) The uppertound U_{i} may be updated at each iteration, thus making possible the execucion of the rejection operation. Since a rejected node is assigned to the subset $R(i)$, and the selection for branching is per. formed among the nodes in subset $F(i)$, no fuither informatinn associated with the rejected node is required.
b) The updating of the upperbound U_{i} at each iteration reduces the interval of uncertainty of the optimal solution z° at each iteration, since $L_{i} \leq z^{0} \leq U_{i}$. Furthermore, if the branch and bound methot is used for suboptimization, and the process is teminated before ain optimal solution has deen obtained, the algorithm nonetheless provides valuable information at that step. In effect, the avaliable information is represented by a feasible solution to the original problem f. piss a lower bound on the problem that permits us to estinate how far the available feasible solution is from optimality.
c) A measure of effectiveness for the rounding operation is provided by the algorithm. Hote that the set $C(i)$ of terminal nodes of iteration i contains exact'y i nodes this is true, since $z i$ each iteration two new
nodes are created, r and $r+1$ and the node j from which branching occurred is no longer terminal, hence the net increase is one teminal node. Furthermore, according to the partition of C(i) defined earliter, each terminal node is assigned to one of the sets $F(1), E(1)$ or Rii).

Thus, if we let α be number of elements in $F(i)$ and β the number of elements in $R(1)$, a measure of effectiveness (MOE) of the rounding operation may be defined as

$$
\text { MOE }=\frac{\beta}{\alpha+\bar{\beta}}
$$

With the possible operations and associated lemmas established, we now proceed to describe the algorithm

2.5 SPECIFICATION OF THE ALGORITHM

The branch and bound algorithin consists of an initial step that generates the root of the uirected tree (iteration l), plus subsequent analngous iterations, continued until either the optimal solution or sufficient evidence of the existence of no solution is obtained. Note that under the assumption that the rounding operation is possible, P will always have a feasible solution.

STEP 1 . Set $i=1$ and create node $j=1$. Set $F(1)=E(1)=R(1)=\Phi$. Solve A_{1}. If the solution is infeasible, stop; problem P has no solution. Otherwise, if $\underline{x}^{*}(1) \in \Omega_{1}$, stop: the solution is optimal. if $\underline{x}^{*}(1)\left(\Omega_{1}\right.$, bourid node 1 with $L_{1}=z^{*}(1)$. Round node 1 to ob$\operatorname{tain} \underline{\hat{x}}(1), \hat{z}(i)$. Set $U_{1}=\hat{z}(1)$. If $L_{1}=U_{1}$, stop; the rounded solution is optimal Otherwise, $L_{1}<U_{1}$. Assign node 1 to $F(1)$, set 1 : $1+1$ and go to step 1

STEP 1 a) BRANCH Branch frori bounded node J E $F(1)$. Deiete node J from $F(1)$ Create nodes r and $r+i$ and directed arcs (j, r) and ($J, r+1$) Solve problens A_{r} and A_{r+1}, ard in both cases do the following: if $A_{r}\left(A_{r+1}\right)$ is infeasible, exclude node $r(r+1)$ by assigning it to E(i) Othenwise $A_{r}\left(A_{r+1}\right)$ has an optimum solution.

If $z^{*}(r)\left(z^{*}(r+1)\right)>U_{i_{\pi}}$, reject node $r(r+1)$ oy assigning it to set $R(i)$. Otherwise, $z^{\star}(r)\left(z^{*}(r+1)\right) \leq U_{j-1}$, so assign node $r(r+1)$ to set $F(1)$.
b) ROUND. Round node $r(r+1)$ if it was assigned to either $F(i)$ or $R(1)$.
c.1) BOUND FROM ABOVE. Set $U_{i}=\min \left[U_{i-1}, \hat{z}(r), \hat{z}(r+1)\right]$ for node $r(r+1) \in E(i)$ or $R(1)$. Reject nodes of $F(i)$ having $Z^{*}(j)>U$, by assigning them to $R(i)$.
c 2) BOUND FROM BELOW. Select node $k \in F(i)$ by using lower bound operation. Lower bound node k with $L_{i}=z^{\star}(k)$. If $L_{i}=U_{i}$, stop; the feasible solution that provides the upperbound is optimal. Otherwise, $L_{i}<U_{i}$. Set $i=i+1$ and go to step i.

It remains to be srown that the algorithm indeed finds the optimal solution in a finite number of steps. Since it is assumed that the rounding operation is possible, a feasible solution to P exists, and therefore an optimal solution exists. Moreover, from the way the branching operation has been defined and the hypothesis that Ω_{1} is finite, the algorithm would, in a finite number of steps, generate all feasible solutions to P. (i.e.. solutions corresponding to terminal nodes). And finally, frori theorem 2.2, the optimal solution may be identified.

2.6 NOTES TO CHAPTER II

[1] Land, A. H., and A. Doig, "An Aucomatic Method of Solving Discrete Programming Problems", Econometrica, Vol. 28, 1960, pp. 497-520.
[2] Little. J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel, "An Algorithm for the Traveling Salesman Problem", Operations Research, Vol. 11, 1963, pp. 972-989.
[3] Dakin, R. J., "A Tree-search Algorithm for Mixed Integer Programming Problems", The Computer Journal, Vol. 8, 1965, pp. 250-255.
[4] Driebeek. N J., "An Algorithm f"r the Solution of Mixed Integer Progr.tmmirg Problems", Management Scuence, Vol. 12, No. 7, March 1966: pp. 576…587.
[5] Ignall, E. and L. Schrage, "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Prohlems', Operations Research, Vol. 13, 1965, pp. 400-412.
[6] Efroymson, M. A. and T. L. Ray, "A Branch-Bound Algorithm for Plant Location", Operations Research, Vo:. 14, 1966, pp. 361-368.
[7] Gavett, J. W. and N. V. Plyter, "The Cptimal Assignments of Facilities to Locations by Branch and Bound", Operations Research, Vol. 14, 1966 pp. 210-232.
[8] Agin, N., "Optimum Seeking with Branch and Bound", Management Science, Vol. 13, No. 4, December 1966, pp. B-176 - B-185.
[9] Lawler, E. L. and D. E. Wood, "Branch-and-Bound Methods: a Survey", Operateons Research, Vol. 14, 1966, pp. 699-719.
[10] Roy, B., Nghiem, Ph. T. and P. Bertier, "Programmes Linéaires en Nombres Entiers et Procédure S.E.p.", Metra, 4, 19'55, pp. 441-460.
[11] Ichbiah, J. D., Connectivety Analyses and Branch and Bouni Mexthods, Ph.D. Thesis, Massachusette Institute of Technolagy, Cambridge, Mass., August 1967.
[12] Hershdorfer, A. M., A. R. Raat, and G. M. Sturman, "On the Efficient Inversion of Large Structured Matrices", Proceedinjs, A.S.C.E., Engineering Mechanics Division Specialty Conference, Oct. 12-14, 1966, Washingtons D. C., pp. 651-666.
[13] Lomnicki, 2. A., "A Branch and Bound Algorithm for the. Exact Soiution of the Three-machire Scheduling Problem", Operational Research quarterly, Vol. 15, 1965, pp. 89-100.
[14] Balas, E., "An Additive Algorithm for Solving Linear Programs with Zero-One Variables", Operations Research, Vol. 13, 1965, pp. 517-546.

CHAPTER III

CAPITAL INVESTMENT ON INDEPENDENT PROJECTS

3.1 THE CAPITAL ALLOCATION PROBLEM

We shall refer to the problem of optimally allocating a fixed capital budget mony d linite sel of competing proposals as the capital allocation $^{\text {col }}$ problem*. We can make a basic distinction between two classes of allocation problems which will result in substantially different analytical formulations and hence different techniques to be used in their solution process. These correspond to the cases of independent and of dependent investment proposals. We shall consider as independent projects, after Lorie and Savace ([1], p. 229), those for which "the worth of individual investment proposals is not profoundly affected by the acceptance of others".

In this and in the following chapter we shall be concerned with optimal allocation of resources among independent proposals, while in subsequent chapters, optimal capital allocation for dependent projects will be studied for various problems in the context of transportation network synthesis.

Special cases of the capital allocation problem have been studied by Lorie and Savage [1] for the case of independent projects. They first consider the problem of allocating a fixed amount of money among competing alternatives, each requiring a given capital outlay in a single time period. The objective to be optimized is the sum of the net present values of the investments (i.e., the algebraic sum of positive and negative costs flows discounted to the present, using the firms "cost of capital" as' the discount rate). Their proposed solution method is based on ranking the

[^2]investment proposals in decreasing order of present value per dollar of outlay required, and accepting them in that order until the fixed budget is exhausted. They do not, however, deal with the ranking of various combinations of projects and therefore their method does not guarantee an optimal solution.

Lorte and Savage also consider the case where projects require capital outlays in several time periods, and they propose a method later shown by Weingartner [2] to suffer irom several serious defects. Weingartner in [2] identifies capital rationing as an optimization problem and develops an integer programming model. This model, for the single period case, corresponds to the Dantzig formulation of the ($0-1$) knapsack problem, [3]. The model employed by Weingartner in the multiple outlay case corresponds to the (0-1) multi-dimensconal innapsack problem (i.e., the knapsack problem with restrictions on weight, volume, height, etc.). Traditionally, the knapsack problem has been solved by dynamic programming and most rerentily by an enumerative technique developed by Gilmore and Gomory [4]. for the multidimensional knapsack problem, Weingartner and Ness [5] use a recursive relation to solve the complement problem (where projects are successively eliminated instead of accepted) and have reported interesting computational results. Shapiro and Wagner [6] have also studied these problems, demonstrating their connection with renewal problems formulated by means of recursive expressions.

Cord, [7] formulates the single period problem for the case of uncertain returns, and seeks to maximize the total return on investment while maintaining the average variance for the total invesiment within a certain predetermined value. Cord uses the method suggested by Bellman [8] of incorporating one constraint into the objective function by means of a Lagrange muitiplier and then, with a single constraint left, applying the dynamic programming solution of the knapsack problem. A discussion of the drawbacks of the method, and the example problem of Cord, may ve found in [9].

Finally, we point out that the present discounted value used by Lorie and Savage and by Weingartner has been a controversial issue due to the interest rate or "cost of capital" employed to obtain such dis.counted values. Baumol and Quandt [10] have indicated the serious
difficulties that this approach entails, and have suggested an alternative objective function based on explicit discount rates and subjective utilities. Throughout this work, we shal! assume subjective utility functions to express the corresponding figure of merit of the models to be derived.
-. 2 THE VARIOUS CASES OF INYESTMENT DECISIONS
We shall consider various cases of investment decisions on independent projects confronting a firm or a government agency. We shall derive programming models in each case which may be interpreted as network flow problems on capacitated networks, with the additional constraint that flow on a subset of the arcs must be either zero or the upperbound on the arc. The solution techniques provided are special cases of the branch and bound algorithm presented in Chapter II. The problems to be anaiyzed and their characteristics are the following:
i) The capital investment problem requiring cash outlays in various time periods for each project is formulated as a maximum flow problem on a single-source single-sink capacitated network, where flow on the arcs represents cash flow and the flow on the arcs emanating from the source is restricted to be either zero or at upper bound. Its analogy to a special class of plant location protlems is indicated. The branch and bound algorithm, as adapted to the problem, permits the use of the rounding operation; furthermore, the solution of the linear programming problert associated with each node of the solution tree may be obtained by simple inspection.

1i) The (0-1) knapsack problem is then considered as a special case of the previous problem. The solution proposed by Lorie and Savage (that of maximizing net present discounted value) is shown to represeni the root node of the branch and bound tree.

Next part will be devoted to analysis of multistaged resource allocation problems where the horizon and staging are assumed to be given.
ili) The first of these problems to be considered is a capital budgeting problem requiring a single costs outlay per project and subject to capital rationing at each period; but the cash outlays, and thus the investment decision, may be deferred to a later period.

The resulting model whish we shall call the multiknapsaak problem is studied, certain of its properties determined, and finaily an equivalent network flow mode? on a bipartite graph is derived which resembles the fixed-charge transportation problem considered in Chapter VI. The branch and tound technique as applied to the problem, permits the use of the rounding operation; the linear program to be solved at each node of the solution tree is a capacitated transportation problem with surpluses and deficits and with certain routes prohibited.
iv) Finally, a special type of multi-knapsack problem is considered in which all items (projects) must be assigned to knapsacks of given capacity so as to minimize the number of knapsacks required to adequately allocate the items of the problem.

Problems iil) and $i v$), although presented within the framework of capital budgeting, arise in a variety of fields and in particular two such applications to optimal allocation of computer system facilities are discussed in detall

3.3 THE MLLTIPERIOD CAPITAL INVESTMENT PROBLEM

Consider a gove, ment agency or a corporate division confronted with the problem of allocating a multi-staged budget with ceilngs on each stage. among a set of independent projects requiring capital outlays in various time periods (Problem 1: Government agencies typlcally face this problem when the available amount of capital is detemined exogenously by legislature appropridtion ar by government budget pianners. In the case of a rupporate division, top management may detemine the budgets and simultaneously cut oft the division from acquiring additional funds from the capital market

Let $B_{j}, j=1, \ldots, n$ be the budget ceilings at each stage or time period and let $a_{i j} \geq 0$ be the capital outlay required by project $i,(i=1, \ldots, m)$ at time period J. Assume a certain utility f, assuciated with the acceptance of project i^{*}, the \dot{i}_{i} might for example be subjectively determined by the decision maker. A set of projects must be selected for investment so that the total utility is maximized while maintaining the capital outlay at each stage within the corresponding tudgetary ceiling.

We derive an analytical model by considering a bipartite network $G=\left[N_{1}, N_{2}, A\right]$, where N_{1} is a set of m nodes each representing a project proposal, and N_{2} a set of n nodes each associated with one of the stages considered. Let $\sum_{j=1}^{n} a_{1 j}$ be the "demand" or input associated with node i εN_{1} and B_{j} the "demand" or output associated with node $j \varepsilon N_{2}$. Let $x_{i j}$, the flow on the $\operatorname{arc}(1, j) \varepsilon A$, represent a capital outlay, and capacitate these arcs with the upper bounds $a_{1 j}$. Then the capital allocation problem defined above may be expressed as follows: find a flow pattern on the network so as to

$$
\begin{gather*}
\text { P' : Maximize } z=\sum_{i=1}^{\sum_{i}} f_{i} y_{1} \tag{3.1}\\
\text { Subject to } \sum_{i=1}^{m} x_{i j} \leq B_{j} \quad, j=1, \ldots, n \tag{3.2}\\
\sum_{j=1}^{n} x_{1 j}=y_{1} \sum_{j=1}^{n} a_{1 j}, i-1, \ldots, m \tag{3.3}\\
0 \leq x_{i j} \leq d_{1 j} \tag{3,4}\\
y_{1} \text { integer } \tag{3.5}
\end{gather*}
$$

where the y, dre decision variables assoc:ated with each node i e N, which may take on th. values 0 or 1 according to whether project i is

[^3]rejected or accepted tor investment. (By summing (3.4) over j and comparing the result with (3.3), we obtain $y_{i} \sum_{j=1}^{n} a_{i j} \leq \sum_{j=1}^{n} a_{i j}$; and since by (3.5) $y_{\text {, }}$ is resiricted to be integer, it follows that the only possible values for y_{1} are 0 or 1.)

Constraints (3.2) restrict the capital investments incident on node j to be within the available budget at period j. Constraints (3.3) indicate that if project 1 is accepted $\left(y_{1}=1\right)$ the sum of the flows leaving node \mathfrak{i} must be equal to the total investment required for that project over the entire horizon Coupled with the upperbounding constraints (3.4), this condition forces the flow on arss emanating from it be at upper bound as expected. By the same reasoning, if $y_{i}=0$, then $\sum_{j=1}^{n} x_{i j}=0$ and the flows on the arcs $x_{1 j}$ are at zero level.

Observe that the capltal budgeting problem as interpreted in this network flow context corresponds to a special class of plant location probiems [11], [12]; however, in our problem we are maximizing, the flows from plants (projects) to destinations (time periods) are capacitated, and there is no explicit participation of the $x_{i j}$ in the objective function.

Note that relations (3.3) permit P^{\prime} to be exclusively expressed in terms of the set of variables $x_{1 j}$, as follows:

$$
\begin{align*}
P: \text { Maximize } & z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i} x_{i j} \tag{3.6}\\
\text { Subject to } & \sum_{i=1}^{m} x_{1 j} \leq B_{j}, j=1, \ldots, n \tag{3.7}\\
0 & \leq x_{1 j} \leq a_{1 j}, \forall(1, j) \in A \tag{3.8}\\
y_{1} & =\sum_{j=1}^{n} x_{1 j}, \sum_{j=1}^{n} a_{1 j} \text { integer } \tag{3.9}
\end{align*}
$$

where $c_{i}=f_{1}, \sum_{j=1}^{n} a_{i j}$ represents the total uthlity of project i per unit of investment, and thus all arcs emanating from the same node i incur the some cost c_{1}

We observe in passing that if constraint (3.9) is deleted, the resulting problem may be decomposed into n mutual:y independent programs of the form $\operatorname{Max} z_{j}=\sum_{i=1}^{n} \varepsilon_{i} x_{i j}, \sum_{i=1}^{m} x_{i j} \leq B_{j}, 0 \leq x_{1 j} \leq a_{i j}, \forall_{i}$, each one associated with time period j; the solution of which may be obtained by simple inspection as will be shown later.

Before proceeding to develop a solution technique for problem P, wë shall show how the prob!em may be formulated as that of obtaining the maximum flow that max:mizes total utility.

The bipartite network G with multiple sources and sinks may be transformed into an equ:valent network with a single source and a single sink. This may be done by adding artificial nodes s and t, and artificial $\operatorname{arcs}(\varepsilon, i), \forall i \varepsilon N_{1}$ and $(j, t) \forall j \varepsilon N_{2}$, with the following associated values: $c_{s 1}=0, u_{s i}=\sum_{j=1}^{n} a_{i j}$ and $c_{j t}=0, u_{j t}=B_{j}$; where $u_{s i}$ and $u_{j t}$ denote the upperbounds on the respective arcs. Furthermore, we shall require that flow on arcs $(s, 1), 1 \varepsilon N_{1}$ be either zero or otherwise that it saturates the arc. The associated network is shown in fig. 3-1. The first number on each arc represents cost and the second represents arc capacity.

fig 3-1

The problem therefore may be expressed in terms of network flow theory as an analysis problem: find the maximum flow from s to t that maximizes cost on the network of Fig. 3-1, as well as its distribution pattern, such that arcs (s, i) are efther not used or saturated.

The highly combinatorial nature of the problem does not permit network flow theory, in its current state of development, to provide a labeling technique (primal-dual method) to cope with such a problem. However, since a duality theory for discrete programming has recently been developed by Balas [13], a generalized concept of complementary slackness may be derived for this class of problems and thus a generalization of the out-of-kilter method [14] for networks with bivalent arcs may be developed. The author has been working on such an approach, but is unable at this point to present final successful resuits.

3.4 DEVELOPMENT OF A SOLUTION METHOD

We shall adapt in this section the branch and bound algorithm presented in Chapter II as applied to the solution of problem.p. The notation to be employed complies with that used in Chapter II. We shall first define the sets S_{1}, T_{1} and Ω_{1} as follows:

$$
\begin{align*}
& S_{1}=\left[x_{i j} / \sum_{i=1}^{m} x_{i j} \leq B_{j}, 0 \leq x_{i j} \leq a_{i j}\right] \tag{3.10}\\
& T_{1}=\left[x_{i j} / \sum_{j=1}^{n} x_{i j}+\sum_{j=1}^{n} a_{i j}=\text { integer, } x_{i j}=0 \text { or } a_{i j}, \forall(1, j)\right] \tag{3.11}\\
& \Omega_{1}=S_{1} \cap T_{1} \tag{3.12}
\end{align*}
$$

We observe that the sets thus defined satisiy the assumptions made in the original development. The set S_{1} is a closèd convexi set in E^{m+n} obtained as the intersection of the hyperplanes (3.7) and (3.8); it is also bounded since each variable $x_{i j}$, from $(3,8)$, is bounded above and below. T_{1} is a non-empty set in the same space as s_{1} (e.g. $\left.x_{i j}=0, \forall(1, j) \in T_{1}\right)$, and is also finite since $x_{i j}=0$ or $a_{i j}$. Finally, from (3.12) Ω_{1} is finite, since T_{1} is finite.

Note also that since $a_{i j} \geq 0$ and $B_{j} \geq 0$, at least a feasible solution exists, riamely, the status zuo, i.e. the policy of zero investment; and thus an optimal solution always exists.

Branching Operation, Given a certain node l of the solution tree with associated sets Ω_{ℓ} and S_{ℓ}, the branching is defined by their intersection with the sets

$$
\begin{align*}
& v_{\ell, r}=\left[x_{i j} ; x_{k j}=0, \forall_{j}\right] \Rightarrow y_{k} * 0 \tag{3.13}\\
& v_{\ell, r+1}=\left[x_{i j} ; x_{k j}=a_{k j} ; \forall_{j}\right] \Rightarrow y_{k}=1 \tag{3.14}
\end{align*}
$$

for a given $1=k$. The sets thus defined satisfy the sufficient conditions to form a partition of Ω_{l}, (cf. theorem 2.1):

$$
\begin{align*}
& { }^{v} \ell, r r \mid{ }_{\ell, r+1}=\left[x_{1 j} / x_{k j}=0, x_{k j}=a_{k j}, \forall_{j}\right]=\varnothing \tag{3.15}\\
& { }^{v} \ell, r \cup{ }_{\ell, r+1}=\left[x_{i j} / x_{k j}=0 \text { or } a_{k j}, \forall_{j}\right] \tag{3.16}
\end{align*}
$$

and since Ω_{ℓ} is a subset of Ω_{1} (by branching operation) and from (3.10) to (3.12), the variables $x_{k j}$ in Ω_{ℓ} may take on the values 0 or $a_{k j}$. Thus the intersection of Ω_{ℓ} with (3.16) is Ω_{ℓ} and the second condition for sufficiency is also satistied.

Finally, since at each branching operation n variables $x_{i j}$ are set either to zero or at upper bound, and since the number of variables is finite, eventually we will obtain a terminal node t with $S_{t} \equiv \Omega_{t}$ containing a single element of the domain Ω_{1} and hence all feasible solutions to P may be enumerated in similar fashion by developing the entire solution tree.

3.5 THE AUXILIARY PROBLEM AND ITS SUBALGORITHM

At each iteration of the branch and bound algorithm, associated with each newly-generated node ℓ of the solution tree, a continuous auxiliery
problem A_{l} derived from P must be soived. Denote by $I_{0} \subseteq N_{1}$ the subset cf nodes of the network G for which $y_{1}=0:\left(1, e_{0}\right.$, nodes representing rejected piojecis); by $l_{1} \subseteq N_{1}$ the subset of N_{1} associated with $y_{i}=1$, (accepted projects); and by $\mathbb{N}_{1}: N_{1}-i_{0} \cdot I_{1}$, the subset of projects that remain "free" to be accepted or rejected at this step of the solution process, Then the auxilia'y problem A_{l} tal is the form

$$
\begin{array}{ll}
A_{l}: \text { Maximize } & 2(\ell)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i} x_{i j} \\
\text { Sudject to } \sum_{i=1}^{m} x_{i, j} \leq B_{j} & , j=i, \ldots, n \\
0 \leq x_{i j} \leq a_{i j} & , \forall(i, j) \\
y_{i}=\sum_{j=1}^{n} x_{i j} / \sum_{i=1}^{n} a_{i j}=0, i \varepsilon I_{0} \\
y_{i}=\sum_{j=1}^{n} x_{i j} / \sum_{j=1}^{n} a_{i j}=1 \quad, i \varepsilon I_{1} \tag{3.21}
\end{array}
$$

This probien is a ? inear proyram whose solution may be obtained by inspection. Indeed, fron $_{*}(3.20), x_{i j}^{*}=0, i \varepsilon I_{0^{\circ}}$ from (3.21) and (3.19), $x_{i j}^{*}=a_{i j}, 1 \in 1$ The problem (3.17), (3.18), (3.19) with the remaining free vartables nay de decomposed into 11 muturlíy inde.penderx programs of the form:

$$
\begin{gather*}
\text { Marimize } z_{j}-\sum_{1 \in \mathbb{F}_{;}} c_{i} x_{i j} \tag{3.22}\\
\text { Subject to } \sum_{i \in N_{1}}^{i} y_{j}=B_{j} \tag{3.23}\\
0 \leq x_{1 j}: a_{i j} \tag{3.24}
\end{gather*}
$$

where $\bar{B}_{j}=B_{j}-\sum_{i \in I_{1}} a_{i j}$. We flay assume without loss of generality that the indexing of projects i εN_{1} is done in decreasing order of their utility per unit of investment c_{i}, so that $c_{1} \geq c_{2} \geq \ldots \geq c_{m}$. Under this assumption it is obvious that the optimal solution to (3.22) - (3.20) may be obtained by simply setting the variables $x_{i j}$ equal to their upper bound in the order of the index \mathfrak{i} until the budget B_{j} is exhausted. If $\sum_{i \in N_{j}} a_{1 j}>B_{j}$, then one single variable will take on a value lass than its upperbound. The problem (3.22) - (3.24) may be solved for ali j in this fashion. Thus the optinial solution co the auxiliary problem A_{ℓ} will be $x_{1 j}^{*}=a_{1 j}$ if $a_{1 j} \leq \bar{B}_{j}$, zero otherwise and:

$$
x_{r j}^{*}= \begin{cases}0 & \text {, if } r \in I_{0} \tag{3.25}\\ a_{r j} & \text {, if } r \in I_{1} \\ a_{r j} & , \text { if } \sum_{i=1}^{r-1} x_{i j}^{*}<E_{j} \text { and } \sum_{i=1}^{r} x_{i j}^{*} \leq B_{j}, r \in N_{1}, r>1 \\ E_{j}-\sum_{i=1}^{r_{i=1}^{-1} x_{i j}^{*}} & , \text { if } \sum_{i=1}^{r-1} x_{i j}^{*}<B_{j} \text { and } \sum_{i=1}^{r} x_{i j}^{*}>B_{j}, r \in N_{1}, r>1 \\ 0 & , \text { if } \underset{i=1}{r_{i=1}^{-1} x_{i j}^{*} \geq B_{j}, r \in \mathbb{N}_{1}, r>1}\end{cases}
$$

The objective function will have the following value:

$$
\begin{equation*}
z^{*}(i)=\sum_{i \in I_{1}}^{\sum} f_{1}+\sum_{i \in \mathbb{N}_{1}} \sum c_{j} x_{i j}^{*} \tag{3.26}
\end{equation*}
$$

Note that if for any froblem $B_{j}<C$, the corresponding A_{i} is infeasible and the node of the tree may be excluded withcut furthecomputation.

Rounding operation. Observe that from the optimal solution (3.25), (3.26) to A_{l}, and trom (3.9), the set of y_{i}^{*} may be determined. If all of them are integer, then (325), (3.26) constitute a feasible solution to problem P. If this is not the case, then a feasible solution to P may be obtained without any additional computational effort by simply setting

$$
\hat{y}_{i}=\left\{\begin{array}{l}
y_{i}^{*}, \text { if } y_{i}^{*}=0 \text { or } 1 \tag{3.27}\\
0, \text { if } 0<y_{i}^{*}<1
\end{array}\right.
$$

or equivalently, if $0<x_{i j}^{n}<a_{i j}$, then set $\hat{x}_{i, j}=0$ for all $j \varepsilon N_{2}$, otherwise set $\hat{x}_{i j}=x_{i j}^{*}$. The value of the objective function is given by:

$$
\begin{equation*}
\hat{z}(\ell)=\sum_{i \varepsilon I_{1}} f_{i}+\sum_{i \varepsilon \mathbb{N}_{1}} \sum_{j} c_{i} \hat{x}_{i j} \tag{3.28}
\end{equation*}
$$

The solution thus obtained is feasible for P; nute that in obtaining $\hat{x}_{i j}$, the values $x_{i j}^{*}$ have been reduced if changed at all, hence constraints (3.7) and (3.8) are still satisfied. Also from (3.27), constraint (3.9) is satisfied and the solution is feasible for?

The rounding operation Jefined by (3.27) and (3,28) wil? ..efore permit us to perform rejection of certain branches of the branch and bound tree, since $(3,28)$ constitutes a lower bound on the optimal solution to P.

3.6 THE BRANCH AND BOUND ALGORITHM

Having shown that the assumptions of the branch and bound algorithm are satisfied and haying developed a sutalgorithm for soiation of the auxiliary problem, we may now proceed to establish the solution mathod as applied to our capital budgetiny nroblem. Note that we have simplified the statement of the algor:thm (cf. Chapter II) and also have expressed it in term:s of a maximization probiem.

STEP 1. Set $i=1$, generate node 1 by soiving A_{1} (i.e.: P without constrain!s $(3.9 i)$, and iet z^{*}. $x_{1 j}$ oe the optimal solution. From ; 39 j Jotain y_{i}^{*}. If all f_{i}^{*} are 0 or 1 , stop; the solution is optimal othernise siaix node 1 with $U_{1}=z^{*}$. Round node 1 to obrain $\left(\hat{z}, \hat{i}_{1,}\right)$. jet $i_{1}=\hat{z}$. :f $-1=U_{1}$, stop; the rounded solution is oprimal. Otherwise $L_{1}<J_{1}$. Set $i=i+1$ and go to step 1.

STEP i a) BRANCH. Beanin iron bounded node ℓ. Select one y_{k}^{*} having a iractional wiue. i'eate njaes r and $r+1$ and directed arcs $(\ell, r j$ and $i \ell, r, i)$. Soive prob!em A_{r} with $y_{k}=0$, adding k to set I_{0}, and soive problem A_{r+i} with $y_{k}=1$, adding k to set I_{1}. If $z^{*}(r)$ or $z^{*}(r+1)<L_{i-1}$, reject the corresponding node. If one is infeasidie, exclide the corresponding node.
b) ROUND. Round nodes r and $r+1$.
c. 1) BOUND FROM BELOW. Set $L_{i}=\max \left[L_{i-1} ; \hat{z}(r), \hat{z}(r+1)\right]$. Reject all nodes with $z^{*}<L_{1}$.
c.2) BOUNO FROM ABOVE. Select node l such that $z^{*}(l)=$ max $\left\{z^{x}(k)\right\}$, for current terminal nodes. Upperbound node ℓ with $U_{i}^{k}=z^{*}(\ell)$. If $L_{1}=U_{i}$, stop; the feasible solution that provides the lower bound is optimal. Otherwise, $L_{i}<U_{i}$. Set $\mathfrak{i}=\mathfrak{i}+1$ and go to step 1.

At each oranching operst:on, one of the current functional y_{1}^{*} must be selected to take on the vaives 0 and 1 . There may be severa: such variables and in general there is no clear cut selection rule that would guarantee the fastest sonvergense to the optimum. Usua:ly certain heuristic rules are discovered when sufficient computational experience with the algorithm is avallable. Our experience with problems solved by hand has indicated that selection of the eractional y_{r}^{*} having the largest total investment $\sum_{j} a_{r j}$ tends to result in infeasible nodes for the branch $y_{r}=1$, thus reducing the number of terminal nodes for which data must be preserved and resulting in a reduced time of computation.

3.7 SOLUTION OF AN EXAMPLE PROBLEM

Consider as an example the problem given in Table 3-1, taken from [2], involving 10 projests and 2 stages. The budgetary ceilings are $\mathrm{B}_{1}=50, \mathrm{R}_{2}=20$.

Project No	f_{1}	$\mathrm{a}_{1} 1$	${ }^{\text {a }}$,		$\left\|\begin{array}{c} \text { Project } \\ \text { No } \end{array}\right\|$	f_{i}	a_{i}	${ }^{1} 12$	$\frac{f_{i}}{\sum_{j} a_{i j}}$
1	15	6	2	1.875	6	40	30	35	0.615
2	17	6	6	1.417	7	12	18	3	0.571
3	15	6	7	1.154	8	17	54	7	0.279
4	12	6	6	1.000	9	14	48	4	0.269
5	14	12	3	0.933	10	10	36	3	0.256

T:3LE 3-1

To generate the root, (node 1), the auxiliary problem A_{1} must be solver. The solution is obtained for each time period by neans of expressions (3.25). Here $\mathrm{I}_{0}=\mathrm{I}_{1}=\Phi$ and $\mathrm{B}_{\mathrm{j}}=\mathrm{B}_{\mathrm{j}}$. The snlutions are:
$x_{i 1}^{*}=[6,6,6,6,12,14, c, 0,0,0]$
$x_{i 2}^{*}=[2,6,7,5,0,0,0,0,0,0]$, thus
$y_{1}^{*}=\left[1,1,1, \frac{11}{12}, \frac{12}{15}, \frac{14}{65}, 0,0,0,0\right], z^{*}(1)=47+30.82=77.82$
and by rounding y_{1}^{*} we ootain
$\hat{y}_{i}=[1,1,1,0,0,0,0,0,0,0], 2(1)=47$
Therefore, $L_{1}=47, U_{1}=77.82$ and node 1 is bounded.

The subsequent iterdtions and their pertinent data are shown

Step \mathbf{i}	Feasible nodes F(1)	Excluded nodes	Rejected nodes	Lower bound L_{i}	Upper bound U_{i}
1	1^{*}			47	$77.82{ }^{\dagger}$
2	$3 *$	2		47	77.19
3	4*, 5			59	74.46
$\stackrel{4}{4}$	5.6^{*}, ?			30	73.85
5	$5.88^{*}, 9$		7	70	73.59
6	$5,9,10^{*}$		11	70	73.13
7	5*, 9, 13	12		70	73.10^{\dagger}
8	9, $13,15 *$	14		70	72.98
9	9, 13, 17^{*}		16	70	72.78
10	9, $13{ }^{*}$		18, 19	70	$71.68{ }^{\dagger}$
11	$9 *$	20	21	T0	$70.56{ }^{\dagger}$
12	23^{*}	22		70	70.54
13	$25 *$	24		70	70.51
14	27*	26		70	70

* : bounded node
t : search on a new branch of the solution tree

TAGLE 3-2
in Table 3-2 and the actial soiution tree in Figure 3-3 A total of 27 nodes are generated although only 20 need be evaluated by means of expressions (3 27), (The infeasibility of excluded nodes is detected when $B_{j}<0$ for any J) The second column of Table $3-2$ indicates the number of current terminal nodes for which information must be stored for later use. Note indi at any one time no more than three such feasible teminal nodes exist

Fig. 3-2 graphically shows the effectiveness of the rejection rule. The difference between the lines a and b may be attributed to the selection rule employed in shoosing the fraitional variable y_{f} to be fixed at each iteration. Ine difference between lines b and c represents the effect of the rejection rule, which in this case not only dampens the growth rate of the set of feasible nodes, but in a certain interval makes the size of the set decrease with the number of iterations. Finally, note that since the number of feasible terminal nodes at the end of iteration 14 is only one; this indicates that the optimal solution, accept projects $1,2,4,5$ and 7 , is unique.

a : terminal nodes of the solution tree
0 : terminal nodes excluding infeasible nodes
c. teminal nodes excluding infeasible and rejected nodes

FIG 3-2

In table 3-2 we have indicated the steps at which a search along a new branch of the tree is started this type of information is valuable in the context of computer implementation of the algorithm. In fact, at each iteration, a search over all currently feasible nodes must be

fis 3-3 ire sulution iee
performed to determine the node from which to branch next: $\max \left\{z^{*}(k)\right\}$.
$\operatorname{kEF}(i)$
This is essentially an optimization problem, solved by a table look-up equivalent to an exhaustive search. If at each iteration the node numbers of the best and second best (or as many as desired) Σ^{*} values are stored separately, and updated at each iteration, the number of table look-ups is reduced. It is easy to verify that a table look-up is not required until after the number or tree branches so far developed at least equals the number of decreasingly best nodes stored separately. At this point, the table look-up would produce the next set of decreasingly best nodes needed to begin the next sycle of the operation.

In the example considered, if the three values with the best z^{*} values are available, the first table look-up would be required at iteration 12 to determine that node 23 should be the one from which to branch next. At that point, of course, the table consists of one single element.

It may be worthwhile to point out that the dimensionality of the tree depends largely on the number of projects considered rather than on the number of time periods; the latter only implies extra computation of expressions (3.25) for all time periods at each node of the tree. That is, the totai number of nodes of the final tree is expected to vary slightly as a function of the number of time periods considered.

Excellent results have been obtained with this branch and bound technique. For a report on this computational experience, the reader is referred to [15].

3.8 NOTES TO CHAPTER 111

[1] Lorie, J. H., and L J. Savage, "Three Problems in Rationing Capital", The Journal of Buereso. Vol. Xxvill, October 1955, pp. 229-239.
[2] Weingartner, H M, Mathomat cal Prozimming and the Analysis of Capital Budgeting PiubRems: Prentiee-Hall: Inc., Englewood Cliffs, 1963.
[3] Dantzig, G B. "Discrete Variable Extremum Problems": Operations Kesear:! , April 1957, pp. ?66-277.
[4] Gilmore, P C. and R. E. Gomory, "A Lיnear Programing Approach to the Cutting Stock Problem - Part II", Operations Research, Sept. Oci. , 1963: pp. 863-888
[5] Weingartner, H. M. and D. N. Ness: 'Methods for the Solution of the Multi-dimensional 0/1 Knapsack Problem:", Operations Research, Jan. Feb., 1967, pp. 82-103.
[6] Shapiro, J F. and H. M. Wagner, "A Finite Renewal Algorithm for the Knapsack and Turnpike Models". Operations Reseaich, March-A.prii, 1967, pp. 319-341
[7] Cord, J., A Method for Allocating Funds to Investment Prcjects when Returns are Sutject to Uncertainty": Managoment Seicnce, January, 1964, pp 335-341.
[8] Bellman R., Corment on Dantzig's Paper on Discrete-Variáble Extremum Problems", Cfestatios Rescaicit. Oct 1957, pp. 723-724.
[9] Weingartner, H. M., Capital Budgeting of Interrelated Projects: Survey and Synthes:s", samyonest Scaebce, March 1906, pp. 485-516
[10] Baumol, W. J. and R. E Yuandt. "Mathematieai P.ograrming and the Discount Rate under Cipled Rationing, fabum Jewami, June, 1965, pp. 317329.
[11] Balinski, M L, "Integer Programming Methods Uses, Computation",

[12] Efroymson, M. A. and T. L. Ray, "A Branch and Bound Algorithm for Plant Location", Opcrations Research, May-June, 1966, pp. 361-368.
[13] Balas, E., "Duality in Discrete Progranming", Technical Report 67-5, Operations Research House, Stanford University, August 1967.
[14] Fulkerson, D. R., :Än Out-of-Kilter Method for Minimal Cost Flow Problems", Journal of the Socrety for Industrial and Applied Mathematics, V. 9, 1961, po. 18-27.
[15] Uchoa-Rosso, F. and K. G. Follansbee, A Branch and Bound Algorithm for the Multiperiod Capital Investment Protlem, Research Report R68-40, Massachusetts Institute of Technology, Department of Civil Engineering, July 1958.

CHAPTER IV

JINGLE STAGE INVESTMENT: THE KNAPSACK PROBLEM

4.1 THE (0 1) KNAPSACK PROELEM

The multי-dimensional knapsack problem studied in Chapter ill, for the special cases $n=i$ (one single period) corresponds to the ($0-1$) krapsack problem formulated by Dantzig. As we mentioned before, this problem has traditionally been solved by dynanic programming. Gilmore and Gomory [1] have recently developed a theory for knapsack functeons (i.e., the which is considered as a parameter). Although they nave presented aloos thms for the knapsack problems without upperbound on the variables, for the (0-1) case they have only indicated how an algorithm based on dunamic programming should be derived to solve the problem for various values of the budget.

In this section and forthcoming sections we shall study some important economic interpretations related to the dua of the knapsack problem. In this context, we shall tirst relax the discrete restriction on the variables, and later we shail also formalate the dual of the original kndpsack problem, making use of Ealas discrete programing duality theory. Two branch and bound solution methods w.ll be proposed based on the general a!geritim of crapter il. The i st method constitures a spectal case of the algor: thm developed for the naiti-dimensional knapscick problem in jection 3. We shall discuss the smplifications resulting - rom assuming an livestment horizon of one time period. The second algorithin, although a brance dnd boind solution method complying with the

 indicated by lanoidn [j]. (1, 2.. the tree smultheously solves the kriapsach prooler: for various valaes of the mades:

4.2 ECONOMIC INTERPRETATION OF THE DUAL LINEAR PROGRAM

By collapsing tre index j in the formulation P of Section 3.3, the knapsack problem of Dantzig may be modeled by the following discrete (bivalent) programing problem:

$$
\begin{gather*}
\text { Q:Maximize } \quad z=\sum_{i=1}^{m} c_{i} x_{i} \tag{4.1}\\
\text { Subject to } \sum_{i=1}^{m} x_{i} \leq B \tag{4.2}\\
0 \leq x_{i} \leq a_{i} \quad, \psi_{i} \tag{4.3}\\
x_{i}=0 \text { or } a_{i} \quad, \forall_{i} \tag{4.4}
\end{gather*}
$$

where (4.3) is obviously redundalit, but has not been removed here for reasons that will become evident. Let us assume that constraint (4.4) is relaxed; that is, projects may be accepted for which the capital outlay is crily a fractinn of the total capital required, a_{i}. Under this assumption the resulting problem, which we shall denote Q^{\prime}, is a linear program whose associated diai program is the following problem D^{\prime} :

$$
\begin{array}{r}
D^{\prime}: \text { Minimize } z^{\prime}=B v+\sum_{i=1}^{m} a_{i} u_{i} \\
\text { Subject to } v+u_{i} \geq c_{i} \\
v, u_{i} \geq 0 \quad, \forall_{i} \tag{4.7}
\end{array}
$$

where v is the dual variable or shadow price associated with constraint (4.2) and the u_{i} the shadow prices associated with constraints (4.4). Let is assume that $c_{i} \equiv f_{i} / a_{1}>0$, and that as before, the c_{i} are ordered in decreasing sequence, (1.e., $c_{1} \geq c_{2} \geq \ldots \geq c_{m}$). Under these assumptions it is obvious that the optimal solution of Q nay be detomined recursively by

$$
\begin{align*}
& x_{1}^{*}= \begin{cases}A_{1} & , \text { if } a_{1} \leq B, \\
B & , \text { if } a_{1}>B,\end{cases} \\
& x_{r}^{*}= \begin{cases}a_{r} & , \text { if }{ }_{i=1}^{r} \sum_{i=1}^{l} x_{i}^{*}<B \text { and } \sum_{i=1}^{r} x_{i}^{*} \leq B, r>1 \\
B-{ }_{i=1}^{\sum_{i=1}^{l} x_{i}^{*}}, \text { if } \sum_{i=1}^{r-1} x_{i}^{*}<B \text { and } \sum_{i=1}^{r} x_{i}^{*}>B, r>1 \\
0 & , \text { if } \sum_{i=1}^{r-1} x_{i}^{*} \geq B, r: 1\end{cases} \tag{4.8}
\end{align*}
$$

Denoting by $r=s$ the index of the lasi accepted project, we see from (4.8) that only x_{5} may be less than α_{s}, and thus project s is the only one partially accepted. The rest are totally accepted if $r<s$ or totally rejected if $r>s$. From (4.8), the optimal solution will satisfy (4.2) as a strict equality (the constraint is active).

If \underline{x}^{\star} and $v^{\star}, \underline{u}^{\star}$ art optimal solutions in their respective programs, from duality theory of linear programming the following complementary slackness conditions must be satisfied:

$$
\begin{align*}
& v^{\star}\left[B-\sum_{i=1}^{\prod} x_{i}^{*}\right]=0 \tag{4.9}\\
& u_{i}^{*}\left[a_{i}-x_{i}^{*}\right]=0 \tag{4.10}\\
& x_{1}^{*}\left[u_{i}^{*}+v^{\star}-c_{i}\right]=0 \tag{4.11}
\end{align*}
$$

From (4.9), if $v^{*}>0$ then $\sum_{i=1}^{m} x_{i}^{*}=B$, which is the case under consideration. Ther we conclude that for an optimal solution, the budget ceiling is a scarce resource and v^{*} may be interpreted as the value or imputed rate of an additional dollar added to the budget. Note that this
rate is always positive* in the 1 inear programming case, and its value will be de :ermined below.

From (4.10), $u_{i}^{*}=0$ for rejected projects, and for positive u_{i}^{*} the project is accepted. The values u_{1}^{*} represent the internal rate of return of one dollar invested in project 1. From (4.11), for accepted projects the following holds:

$$
\begin{equation*}
u_{1}^{*}=c_{1}-v^{*} \geq 0,1 \leq s \tag{4.12}
\end{equation*}
$$

We shall now proceed to determine the optimal solution v^{*}, \underline{u}^{*} to the dual problem. For an cpumal solution, both objective functions are equal, and taking into account the fact that $x_{i}^{*}=0$ and $u_{i}^{*}=0$ for $1>s$, (i.e., for rejected projects) we obtain:

$$
\begin{equation*}
\sum_{i=1}^{s_{i} 1} c_{i} a_{i}+c_{s}\left(B-\sum_{i=1}^{s_{i} 1} a_{i}\right)=B v^{*}+{\underset{i}{i} i=1}_{s_{i} 1} a_{i} u_{i}^{*} \tag{4.13}
\end{equation*}
$$

By subsitituting (4.12) in (4.13) and soiving for v^{*} the following condition results:

$$
\begin{equation*}
v^{*}=c_{s} \tag{4.14}
\end{equation*}
$$

and thus the optimal value of an additional doliar added to the budget is equal to the net present value per dollar invested of the last project uccepted for injestment in the optimal solution to Q. Finally, substitut:ng (4.14) back in (4.12),

$$
\begin{equation*}
u_{1}^{*}=c_{1}-c_{s}, 1 \leq s \tag{4.15}
\end{equation*}
$$

which will be non negative since we have assumed $c_{1} \geq c_{s}$ for $1 \leq s$. The rate of return of one doliar invested in pmject, $1,1 \leq s$, is the
obviously $v^{}=0$ for the trivial case $\sum_{i=1}^{m} d_{i}<B$.
difserence, if any, between the net present values per dollar invested of project 1 and project s (the marginally accepted project).

The values u^{*}, suggest a natural way to define investment priorities. Lorit and Savage [4] propose a ranking strategy based on decreasing net present values per dollar of outlay, thac is in decreasing order of their c_{j}. Thus, the ranking suggested by (4.15) and the one of Lerie and Savage would result in the same projects selected for investmenir. We emphasize again that this holds only for situations in which the marginal project accepted may be accepted as a fraction. We shall consider now the dual of problem Q, for whish attempting project divisibility is an absolute faux pa

4.3 THE DUmL OF THE DISCRETE PROGRAM

In this section we shall study the dual of the all-bivalent program Q based on the duality theory of discrete programming, [5]. We shall reconcile this theory with the dudl program suggested by Weingartner [6] for tine single period inses tmerit. problem.

Let us consider 0 subject to constrairits (4.2) and (4.4) only, and drop the redundant constraints (4.3) from further consideration. The dual of such pregram is the following max-min problem:

$$
\begin{gathered}
D: \underset{\underline{x}}{\operatorname{Max}} \operatorname{Min} z^{\prime}=B v-\sum_{i=1}^{M} s_{i} x_{1} \\
\text { Subject to } v-s_{1}=c_{1} \\
v \geq 0, x_{1}=0 \mathrm{cr} a_{1}, \forall_{1} \\
s_{1} \text { unrestricted }
\end{gathered}
$$

Since the slack variables s, are unrestricted, they effectively nullify constraincs (416) and problem D may be rewritten as

$$
D: \operatorname{Mir}_{v}\left[\begin{array}{lll}
B v-\operatorname{Max}_{2: s_{0}} & \left.\underset{1-1}{m}\left(v \quad c_{1}\right) x_{1} ;,>0\right) \tag{4.17}
\end{array}\right]
$$

where $s_{0}=\left\{\underline{x} / x_{i}=\right.$ o or $\left.a_{1}\right\}$. As suggested by Balas, the solution of problem Q may be obtained by solving the equivalent problem (4.17) using the partitioning technique of Benders (cf. Appendix A), thus obtaining the optimum \underline{x}^{*} and v^{*}. However, we shall assume here that an optimal solution x^{*} to problem Q is already avallable (obtained for example by the branch and bound technique of Section 3.6).

The saddle-point theorem of Balas guarantees that if an optimal solution $\underline{x}^{*}, 2^{\star}$, to Q exists, then an optimal solution $v^{*}, \underline{s}^{*}, z^{*}$ to D exists, with $z^{*}=z^{\prime \prime}$.

THEOREM 4.1 CComplementary Sexckness). If x " $z^{\prime \prime}$ and $v^{*}, z^{\prime \prime}$ are optimal solutions to Q and D respectively, then

$$
\begin{equation*}
v\left[B-\sum_{i=1}^{m} x_{i}\right]=0 \tag{4,18}
\end{equation*}
$$

Proof: Since by the saddle poirt theorem $z^{\star}=z^{\prime *}$, we have

$$
\begin{aligned}
& \sum_{i=1}^{m} c_{i} x_{i}^{*}=5 v^{*}-\sum_{i=1}^{m}\left(v^{*}-c_{i}\right) x_{i}^{*} \\
& \text { or } \quad 0=v^{*}\left[B-\sum_{i=1}^{m} x_{1}^{*}\right]
\end{aligned}
$$

So for $v^{\star}>0$, the butget is a scarce resource. Alternatively, if the budget is a free good, $\sum_{1=1}^{m} x_{i}^{*}<B$ and tharefore $v^{*}=0$. The dual variable may be interpreted as in the continuous case: it is the value or imputed rate of an additional dollar added to the budget.

Once an optimal solution \underline{x}^{*}, z^{*} to Q is avail $\stackrel{y}{2} l e$, then the optimal dual variables may be determined as follows: if $\sum_{i=1} x_{1}<B$, then from theorem 4.1 it follows that $v^{*}=0$ and thus $s_{i}^{*}=-c_{i}$.

If on the other hand, $\sum_{i=1}^{m} x_{1}^{*}=B$, then by substituting x_{i}^{*} for x_{i} in D we obtain the following square system of equations of order $m+1$:

$$
\begin{align*}
& B v^{*}-\sum_{i=1}^{m} s_{1}^{*} x_{i}^{*}=z^{*} \tag{4.19}\\
& v^{*}-s_{i}^{*}=c_{i} \quad, \psi_{i} \tag{4.20}\\
& v^{*} \geq 0 \tag{4.21}
\end{align*}
$$

LEMMA 4.1 For an uptemal solution i_{i}^{*} to Q, satisfyeng $\sum_{i=1}^{m} x_{i}^{*}=3$, the equation (4.19) is redundant.

Proof. Multiplying each member of $(1,20)$ by x_{i}^{*} and suiming over i we have

$$
v^{*} \sum_{i=1}^{m} x_{i}^{*}-\sum_{i=1}^{m} s_{i}^{*} x^{*}=\sum_{i=1}^{m} s_{i} x_{i}^{*}
$$

but this expression, under the assumption that. $\sum_{i=}^{m} x_{i}^{*}=B$, is equal to (4.19).

It follows from the lemma that the rank uf the system (4.20)-(4.21) is m (the system is triangulir), and thus v^{*} may take any nori-negative arbitrary vilue

We shail seiect for v^{*} the value c_{5} where s is aga in the project among those accepted which has the minimum net present yaiue per dollar invested. This choice will insure that all accepter' projects have nonnegative berefit, that is, $c_{1}-v^{*} \geq 0$. Thus, denoting by I_{0} the set of rejected projects and by l_{d} the accepted set, we have

$$
\begin{align*}
& -s_{i}^{*}=c_{i}-c_{s} \geq 0,1 \in I_{a} \\
& -s_{i}^{*}=c_{1}-c_{s} \geq 0, i \in I_{0} \tag{4.22}
\end{align*}
$$

Observe that it may still be possible that for a rejected project $c_{i}>c_{s}$ implying that this project has a positive benefit $\left(c_{i}-c_{s}>0\right)$.

We may contrast (4.22) with the linear programing race studied in Section 4.2 where the following conditions were satisfied:

$$
\begin{array}{ll}
c_{1}-c_{s} \geq 0, & i \in I_{a} \tag{4.23}\\
c_{1}-c_{s} \leq 0, & 1 \varepsilon I_{0}
\end{array}
$$

Thus in ine integer programming context, as Weingartner remarks, rejected projects for which $c_{\mathbf{j}}-c_{\mathbf{s}}>0$ are essentially taxed or penalized to eliminate any profit on them, thereby preventing their acceptance.

Finally we shall reconcile the results of the integer duality theory deyeloped above with Weingartner's "alternate dual values" approach to establishing shadow frices in the integer capital investment problem. He assumes ([6], pp. i03-106) that an optimal solution $\underline{x}^{\star}, z^{\star}$ to the primal integer program Q is available (i.e., the sets I_{0} and l_{a} are given). He evaluates the "aiternatf: - al variables" by solvinc a linear programing model constructed in such a way that it allows negative benefits only for rejected projects. The model he proposes, re-expressed in our terminology and notation, is is follows:

$$
\begin{align*}
& w: \operatorname{Minmmze} \quad z=B v+\underset{i \varepsilon I_{a}}{i} u_{j} x_{i}^{*} \\
& \text { Subject to } v+u_{1} \geq c_{i}, \quad \text { ela } \tag{4.24}\\
& v * u_{i}-r_{1} \geqslant c_{i}, \quad V \in I_{0} \tag{4.25}\\
& v, u_{1}, r_{1} \geq 0
\end{align*}
$$

where the benefit $\left(c_{1}-1\right)$ is yiven by $u_{1} \geq 0$ for accepted projects and b; $\left(u_{1}-r_{i}\right)$ for rejected projects. Under the assumption that $a_{i} \geq 0$ and
$c_{i} \geq 0$ and that $l_{a} \nsubseteq \Phi$, Weingartner's probl M may be solved by inspection as warranted by the foliowing theorem

THEOREM 4. 2 The alues $\therefore \dot{v}_{i}, r_{i}^{*}$ 23nititsti an jetimal solution to ω

Proof: For any $v^{*} \geqslant 0, u_{1}^{*}$ and $\gamma_{1}^{*}, 1 \varepsilon!_{0}$ exist satisfying (4.25) as a strict equality without altenng the value of the objective function. Now consider constraints (4.24):
a) $v^{*}=0 \quad \ddot{y}^{*}=0, \psi_{1}=i_{d}$, is not possibie since $!_{a}$ is assumed non-empty.
b) if $v^{*}=0$, then $u_{i}^{*}>0$. (If $u_{i}^{*}=0$ for a subset of l_{a}, then $c_{i}=0$, or else the solution v^{*}, u_{i}^{*} is infeasible.) Assume also $v^{\star}+u_{1}^{*}>c_{1}, i \varepsilon i_{a}$. Then each v_{i}^{*} may de decreased without vic.ating the constraints (4.24) but with a decrease in the value of the objective function. Thus $v^{*}+v_{1}^{*}=c_{i}$.
c) $v^{*}>0, u_{1}^{*}=0$ for some $1 \varepsilon I_{a}$ and $u_{i}^{*}>0$ for the remaining $i_{*} \in I_{d}$. Assume also $v^{*}>c_{i}$ for allii such that $v_{i}^{*}=0$. Then v may be decreased without violating the constraints, causing the objective function to decrease Therefore $v^{*}=c_{i}$. If v^{*} $: u_{1}^{*}>0$ still holds for 1 such that $u_{1}^{*}>0$, then u_{i}^{*} may be decreased without violating the corstraint, causing the objective to decrease Thus * $+u_{1}^{*}=\Sigma_{1}, Q \equiv 0$

Furthermore, by taking the dual of w it can be snowin that the optimal solution z^{*} to w is equal to the assumed known value z^{*} of the integer problem Q. Thus the solution of w is reduced to solving the system of equations:

$$
\begin{align*}
& B v^{*}+\sum_{1 \varepsilon 1_{a}}^{\sum} u_{1}^{*} x_{1}^{*}=2^{*} \tag{4.26}\\
& v^{*}+u_{1}^{*}=c_{1}, 1 \in I_{a} \\
& v^{*} \cdot u_{1}^{*}-r_{1}^{*}=c_{1}, 1 \varepsilon I_{0} \\
& v^{*}, v_{1}^{*}=r_{1}^{*} \geq 0
\end{align*}
$$

This system is sol ved as follows: if $\sum_{i \in I_{a}} x_{1}^{*} B$, then (4.26) is redundan:": then by selecting $v^{*}=c_{s}$ arbitrarily with c_{s} being the smailest $c_{1}, 1-1$, the solution is

$$
\begin{array}{ll}
v^{*}=c_{s} \\
u_{1}^{*}=c_{i}-c_{s} \geq 0 & \quad i \in I_{a} \tag{4.27}\\
u_{1}^{*}-\gamma_{i}^{*}=c_{1}-c_{s} \geq 0, & 1 \in I_{0}
\end{array}
$$

Compaifing now the results of (4.22), obtained by direct exploftation of discrete duality theory, with (4 27), derived from Weingertner's inthitively constructed model w, we observe that they are the sare, thus astablishing the equlvalence of both approaches in setermining system of shadoia prices for the caplal investment problen under censideration.
${ }^{*}$ If $\underset{i \in i_{i}}{ } x_{i}^{*}<B$. solution is $v^{*}=0, v_{i}^{*}=c_{1}, i \in I_{a} * v_{i}^{*}-\gamma_{i}^{*}=c_{4} i \in J_{0}$.

4.4 SOLUTION OF THE KNAPSACK PPOBLEM

The branch and bound algorithrm of Section 3.6 may be directly applied to solve the knapsack problem as formulated in problem Q. However, its application to this sing?e period investment problem is totally deterministic in the sense that when a brenching operation is about to take place from a bounded node, the solution of the auxiliary problem for that node contains only one varialbe with $0<x_{i}^{*}<a_{i}$. Hence this particular variable must be a fortiori be fixed to iis only possible values $x_{i}=0$ and $x_{i}=a_{i} i_{n}$ order to continue the execution of the algorithm.

To illustrate its application and to compare it with the aiternative algorithm of Section 4.5, consider the following problem.

EXAMFIE

Assume that the ten projects of the example in Section 3.7 are considered for investment with the same payoffs and with the same total outlays required except that these outlays mast be invested in a single tine period. Table $4-1$ shows the pertinent data. The projects are again oruered in decreasing values of their c_{i}. The budgetary ceiling is $B=70$.

To initia!ize the probleff and thus generate the root-node 1 , problem Q is solved ignoring constraints (4.4). We observe in passing that the solution proposed by Lorie and Savage corresponds to the solution of the auxiliary protiem assocfated with the root of the solution tree. This solution is $z^{*}=79.15$ and $x^{*}=[8,12,13,12,15,10,0,0,0,0]$, where $x_{6}^{*}=10$ is the enly variable roct zero or at upper bound; thus

Project N_{0}	f_{i}	a_{i}	$\frac{f_{i}}{i_{i}}$	Project No	f_{i}	a_{i}	$\frac{f_{i}}{d_{i}}$
1	15	8	1.875	6	40	65	0.615
3	17	12	1.417	7	12	21	0.571
3	15	13	1.154	8	17	61	0.279
4	12	12	1.000	9	19	52	0.269
5	14	15	0.933	10	10	39	0.256

TABLE 4.1
the tranching will take place from node 1 by $f 1 \times i n g x_{6}=0$ and $x_{6}=65$. The rounding solution associated with the node is $\hat{x}:[8,12,13,12,15$, $0,0,0,0,0]$ with $i=73$. The optimal solutions of nodes 11 and 21 are obtained after 11 iterations of the algorithm. The pertinent information at each iteration is recorded in Table 4-2 and the solution tree in fig. 4-2. We observe that since the rounding operation at node 1 produces a solution which turns out to be optimal, the triming of the solution tree by use of the rejection operation is very powe:ful for this particular example.

STEP i	Feasible nodes $F(i)$	Excluded nodes	Rejected nodes R(i)	Lower bound L_{i}	Upper bound U_{i}
1	1*			73	$79.15{ }^{\dagger}$
2	$3 *$		2	73	18.71
3	4, 5**			73	75.79
4	4. 7^{*}		6	73	75.69
\checkmark	4. 9**		8	73	75.56
6	4*, 11		10	73	$74.73{ }^{\dagger}$
7	11. 12 *		13	73	74
8	11. 15 *		14	73	73.28
9	$11,17^{*}$	16		73	73.27
10	11. 19 *	18		73	? 26
11	11.21	20		73	73

* : bounded node
+ : search on new branch of the solution tree

TABLE 4-2

Fivini Table 4-2 we observe that information fur no more than two nodes need be stored at any step of the soluiion prucess. The number of
nodes remaining in the feasible set at the last iteration, $f(11)$, indicate the number of optimal solutions. For this example two strategies, both not exhausting the budget, are avarlable: a) accept projects $1,2,3,4$ and 5 ; b) accepi projects $1,2,3,5,7$. Note that the optimal solution has a total utility of 73 , as opposed to 70 in ine example of Section 3.7 where the buaget cetings were given in two time periods

$a: c(i), b: F(i) \cup R(i), c: F(i)$

FIG. 4-1

In fig. 4-1, the difference between the lines (α) and (b) is fixed since the branching operation is deterministic. Line (c) indicates the number of terminal nodes to be stored a^{+}each iteration The difference between lines (b) and (c) is the result of the resection operation of the algorithm. Note that the rate of increase of terminal nodes with number of iterations perfomed is drastically reduced by the rejection rule in this case

According to the theory of section 4.3 , the imputed dual prices would be $v^{*}=0$, since the budget is a free good and $s_{i}^{*}=-\varepsilon_{i}$.

F1G + 4

4.5 A PARAMETRIC BRANCH AND GOUND ALGORITHM FOR THE KNAPSACK PROBLEM

This section is devoted to the derivation of an alternative algorithm for the solution of the knapsack problem. This method, as will be shown, is a special case of the branch and bound algori hm of Chapter II, with a more elaborate branching mechanism. The algorithm has certain features similar to the so-called impleict enumeration metnods [7], [8], [9]. The most important characterist'c of the method studied here is that it possesses the special property that the final tree configuration cintains the optimal solutions for all similar knapsack problems with largel budgets than the one utilized to generate the tree. The branching part of the algorithm is similar to the one emploved by Ichbiah [3] on a network connectivity analysis problem which guarantees the parametric properties of the resulting alyorithm.

Let us rewrite our bivalent linear programming formulation of the knapsack problem where optimal \underline{x}^{0} and z^{0} are sought as to

$$
\begin{array}{ll}
Q: \text { Maximize } & z(B)=\sum_{i=1}^{m} c_{i} x_{1} \\
\text { Subject to } \sum_{1=1}^{m} x_{i} \leq B \\
& 0 \leq x_{i} \leq a_{i}, \psi_{1} \\
& x_{i}=0 \text { or } a_{1}, \forall_{1}
\end{array}
$$

Here $z^{0}(B)$ is the mapsack function corresponding to a specific value B of the budget. Let is define the sets s_{1}, T_{1} and Ω_{1} as follows:

$$
\begin{align*}
& s_{1}=\left\{x_{1} / 0 \leq x_{i} \leq a_{i}\right\} \tag{4.28}\\
& T_{1}=\left\{x_{1} / \sum_{i=1}^{m} x_{i} \leq B ; x_{i}=0 \text { or } a_{i}\right\} \tag{4.29}\\
& \Omega_{1}=s_{1} \cap T_{1}=i_{1} \tag{4.30}
\end{align*}
$$

The set S_{1} is closed and bounded in $E^{m} ; T_{1}$ is a nonempty and finite set for $B \geq 0$ and thus Ω_{1} is finite.

Branching Operatior. Given a certain node ℓ of the solution tree with associated sets Ω_{ℓ} and s_{ℓ}, the branching is defined by the intersection of the sets

$$
\begin{align*}
& v_{\ell, r}=\left\{x_{i} / x_{k}=a_{k}\right\} \tag{4.31}\\
& v_{\ell, r+1}=\left\{x_{i} / x_{k}=0\right\} \tag{4.32}
\end{align*}
$$

for a given $\mathfrak{i}=k$. The sets thus defined satisfy the sufficient conditions of Theorem 2.1, as may be easily verified. Also, since at each branching operation one variable is set to its only possible values and the number of variables is finite, the complete enumeration of solutions and thus the finiteness of the algorithm is guaranteed.

Auxiliary Prablem. Associated with a newly-generated node ℓ of the solution tree, a continuous problem derived from Q must be solved. Denoting by I_{0}, I_{a}, and I the sets of variables fixed at a zero level, fixed at the upperbound, and free, problem A_{l} takes the trivial form:

$$
\begin{aligned}
A_{\ell}: \text { Maximize } & z(\ell)=\sum_{i=1}^{m} c_{i} x_{i} \\
\text { Subject to } 0 \leq x_{i} \leq a_{i} & , i \in I \\
x_{i}=0 & , i \in I_{0} \\
x_{i}=a_{i} & , i \in l_{a}
\end{aligned}
$$

Since we are maximizing over the set of free variables, bounded from above and since $c_{i} \geq 0$ is assumed, this iinear program has as optimal solution:

$$
{r}^{}- \begin{cases}0 & , \text { if } r \varepsilon l{0} \tag{4.33}\\ a_{r} & , i f r \varepsilon \text { iUI }\end{cases}
$$

Note that A_{l} possesses always an optimal soluticn and therefore the exclusion operation, as defined in Chapter II, will never be applicable t's this problem.

Termenation Rule Rejection operations w!ll not be used in this approach, hence the termination 'se je:anes the fo'lowing as nay be easily verified: termiriate whenever the solution $\underline{x}^{\text {. }}$ "to the auxiliary problem of the current bounded node is feasible, (1.e., $\underline{x}^{*} \in \Omega_{1}$).

LEMMA 4.2 A sjlutcon \underline{x} to A_{l} as feasable for Q ef et also satis oies $\sum_{i=1}^{m} x_{i} \leq B$.

Proof: If \underline{x}_{*}^{*} is optimal for A_{l}, then from $(4.33) x_{i}^{*}=0$ or $a_{i}{ }_{*} \forall_{i}$ and if als $\sum_{i=1}^{m} x_{1}^{*} \leq B$, then from (4.29) $\underline{x}^{\star} \varepsilon T_{1}$ and from (4.30), $\underline{x}^{*} \varepsilon \Omega_{1}$.

COROLLARY 4.1. If \underline{x} is optumal for A_{l} with $\sum_{i=l_{a}} \sum_{l}^{*}>B$, the set S_{l} associated with node l does not contarn a feasdble solution to Q.

From the above corollary, a node r of the tree for which $\sum x_{y}^{*}>B$ may be excluded. Observe however that for a larger value of $1 E I_{a}$ the budget the condition of the corollary may not be satisfied and the branch would not be deleted at that step.

Up to nere the development parallels the additive algorithm of Balas as implemented by Geoffrion [8], with Corollary 3.1 providing the first rejection rule of Balas. From the above discusston it has been shown that Balas' enumerative algoritinm say be interpreted as a branch and bound alcgorithm of the Land and Dolg type

However, from here on our apprjach diverges from [8] in order to provide the parametrir feature of the algorithm.

Fixed varisole oekectsin when a oranching operation is to be performed based on the currently bounded node ℓ, one of the free variables must be selected to be fixed at its two possibie values. We shall select the following criterion that will renter "deterministic" the generation of the branch and bound tree: Select for branching x_{s}. $s \varepsilon$? such that

$$
\begin{equation*}
f_{s}=\min _{1 \in \mathbb{l}}\left[f_{1}\right] \tag{4.34}
\end{equation*}
$$

If there is a iie, select the variable with greatest index, with this selection rule we create the directed arcs $\left(\ell, \ell^{\prime}\right)$ and (ℓ, r). For the new node $\ell^{\prime}, x_{s}=a_{s}$, (project s is accepted), ihe optimal solution to the auxiliary problem A_{l}^{\prime} would be the same as the solution to A_{l}; furthermore, that solution is not feasible for problem Q^{\dagger}. Thus node ℓ^{\prime} will be denoted a pseudo-node and no extra complitation will be necessary whenever such a node is generated. As for node r, the solution to the auxiliary problem A_{r} has a value $z^{*}(r)=z^{*}(\ell)$ where $\left[z^{*}(\ell)-z^{*}(r)\right]$ is the smallest decrease possible in the objective function since, by (4.34), the variable fixed to zero is the one that has the minimum payoff of the set of free variables

Whenever a pseudo-node ℓ ' is generated from bounded node ℓ, then $z^{*}\left(\ell^{\prime}\right)=z^{*}(\ell)$ and the next bounded node of the solution tree would obviously be ℓ^{\prime}. Accordingly, whenever D anching takes \boldsymbol{g} ace from ℓ to ℓ ', an extra branch fro. ?' will alsu take piace ihis dod:tional branch, performed by fixing to zero a new varidole selected according to (4.34) will permit us to "look-2hedd" on the solution tree We remark that the branch from l' fixing the selected varidole to its upper bound remains to be perfurmed and the algorithm must provide for its convenient generation.

[^4]
4.6 STATEMEN: Of THE ALGORITHM

Having satisfied the assumptions of the algorithm of Chapter Il, and having indicated the branching me:hanism to be employed, we proceed to state the parametric branin and bjund algoothn.

STEP 1. Set 1 . . Generate node 1 by solving A_{1} decording to (4.34). Let z^{*}, \underline{x}, be the गprima! solution and derine $B^{*}=\sum_{i=1}^{m} x_{i}^{*}$. If $B^{*} \leq B$, stop; the solution is optina: Otherwise, bound node 1 with y_{1}. 2^{*} set $, ~: ~+~: ~ a n d ~ g o ~ t o ~ s t e p ~: ~$

STEP i
A.1. BRANCH. Branch from bounded node ℓ. Select the variable x_{s} according to (4.34). Create pseudo-node ℓ^{\prime} and node r, and directed $\operatorname{arcs}\left(\ell, \ell^{\prime}\right)$ and (ℓ, r) Solve problein $A_{r} w i$ th $x_{s}=0$. Set $x_{s}=a_{s}$ for pseudo-node ℓ^{\prime}.

BRANCH AHEAD Branch from pseudo node ℓ '. Select a new variable x_{t} according te (4.34). Create node $r+1$ and directed arc $\left(\ell^{\prime}, r+1\right)$ Solve problem A_{r+1} with $x_{t}=0$. If the unique predecessor ℓ_{0} of boundea node ℓ is a pseudo-node, go to $A 2$; otherwise go to B.
A.2. BRANCH Branch from pseudo-node l_{0} Let x_{p} be the variable fixed to zero associated with the arc $\left(\ell_{0}, \ell\right) \quad$ Create pseudo-node ℓ_{0}^{\prime} and dinected arc $\left(\ell_{0}, \ell_{0}^{\prime}\right)$ Set $x_{p}-a_{p}$ for pseudo-nnde ℓ_{0}^{\prime}

BRANCH AHEAD Branch from pseude-riode ℓ_{j}. The variable to be fixed is $x_{t} \quad C r e a t e$ nude $r \cdot 2$ and directed arc ($\left.\ell_{0}, r, 2\right)$. Solve problem A_{r+2} with $x_{t}=0$ Go to B
B. Bound Select node ℓ such that $z^{*}(\ell)=\max \left(z^{*}(k)\right)$ for current terminal nodes. $1+B^{*} \leq 8$ for node ℓ, stop; ine sôiution associated with node ℓ is opt:mal otherwise, upperbound node ℓ with $U_{1}=z^{*}(\ell)$, set $1=1+1$ and go to step 1

The solution tree generated for a knapsark function with $B=B_{0}$ contains the optimal solutions (projects aicepted as well as maximum payoff) for all knapsack funitions with $8 \geqslant B_{0}$, as is snown below. In this sense, the algorithm is parameirl:, By setting $B_{0}-C$ and applying the algortthm, a table may be unstructed with the optimal solutions to problem a_{4} for any non-negative a a de or the Duajeta'y ielling.
 of the budgit, $B: B, \quad T_{k<n: ~}^{3} B$ i: B,

Proof: Assume $2^{0}(B) \quad 2^{3} i_{0}$ ' and 'et $\underline{0}^{0}$ oe the jptinal solut on for the budget B_{0} since $B: B_{0}$, then \mathbb{E}^{0} is also reas 10^{\prime} e for the budget value B, ience $z(B)=z^{0}\left(B_{0}\right)$ for \underline{x}^{0}, a contradiction. Therefcre, $z^{0}(B) \geq 2^{0}\left(B_{0}\right)$

THEOREM 4.3 Let $T_{0},\left[N_{0}, A_{0}\right]$ be the fenal thee genenated by determining the optimal sulution to Q for $B: B$, Then for any $B \geq B_{0}$ there exists a node $k \in N_{0}$ such that the solition t s the auxckary problem A_{j}, sal! z^{*}, \underline{x}, constetutes an potumal sulution for the correspondeng knapsack problem.

Proof: Given $B \geq B_{0}$, the application or the algorithm would generate a tree $T=[N, A]$ for which al least one node $k \in N$ corresponds to the optimal solution. The thee Γ is a sabguph of r_{0}, that is, $N \subseteq_{N_{0}}$ and for all $(1, j) \leq A, d!s o(1, J) \in A_{0}$ In effect, since the algorithm is deterministic, the nodes of T_{0} and $T_{\text {. generated in the same crder, will }}$ have the same issoc!ated solutions to the auxiliary problems A_{l}. It remains to be provec that when generating t, the optimal node k corresponds to a cerialn node of the generated potion t Γ_{0}. Assume the contrary, k : N_{0}; then the solution to A_{k} gives $z^{*}(B)<z^{0}\left(B_{0}\right)$, since any additional branching from r_{0} reduces the upperbound value $z^{\circ}\left(B^{0}\right)$. From Lerma 43 this is a contradiction, and the solution for 8 : B_{0} is not in the ungenerated portion of T_{0}, hence $k \in N_{0}$. It also fellows that T is a subgraph of T_{0}

We now give the following rule for retrieving the optimal node k. The set of bounded nodes at eash iteration of the algorithm for $B=B_{0}$, form a sequence $\left[1, \ell_{2}, \ell_{3}, \quad, \ell_{n}\right]$ where $\ell_{1}, 1 \in N_{0}$ is the bounded node used for branching at iteration 1 and ℓ_{n} is the optimiel node for $B=B_{0}$. Associated with each ℓ_{1} there are two numbers, $z^{*}\left(l_{1}\right)$ and $B^{*}\left(l_{i}\right)$, Due to the way the branch and bound algorithm has been developed, the $z^{*}\left(\ell_{i}\right)$ values constitute a non-increasiny sequence, Therefore, for a given value $B \geq B_{0}$ it sulfices to retrieve the first node for which $B^{*} \leq B$.

4.7 SOLUTI ON OF AN EXAMPLE PROBLEM

As an example consider the following problem involving five projects with payoffs and capital outlays as indicated in Table 4-3. Table 4-4 contains the necessary information for each iteration of the method. The budgetary celling considered is $B=10$.

Project No.	f_{i}	a_{1}
1	6	3
2	4	5
3	3	6
4	2	4
5	1	2

table 4-3

Note that a feasible solution is ontained at iteration 4 when node s is generated, but not until iteration 1 can it be bounded. Note also that at teration 7 (when branching from node 13), all variables for the pseudo-node 13^{\prime} are fixed, its β^{*} value is greate; than the budget. and therefore it may be eliminated from further consideration. The same may be sald of node 15 .

The optimal solution for $8=10$ is then obtained from :rode 5 .
aciept projects 1.2 and 5 with $i(10)=11$

From Table 4-4 any optima! solution for $B>10$ may be obtained. It suffices to search down the column of B^{*} and read off the solution from the row for whith the tirst B less than of equal to the budget of

Step 1	rerminal nodes	B* for bounded node	Upper, vound U_{i}
1	$1 *$	20	16
2	2*, 3	18	15
3	3, 4, 5	16	14
4	$4^{*}, 5,6,7,8$	14	13
5	$5,6,7,8^{*}, 9,10$	14	13
6	$5,6,7,9,10,11,12,13{ }^{*}$	15	12
7	5*, 6, 7, 9, 10, 11, 12, 14, 15	12	12
8	6*, 7, 9,10,11,12,14, 15, 16, 17	10	11

TABLE 4-4

iriterest 15 encountered For $B=14$ the fourth iteration provides an optimum, with $\mathbf{z}^{0}(14)=13$ associated with the coundsd node 4 , namely: accept projects 1, 2, and 3. An alternative optima is given by node 8: accept projects 1, 2, 4 anj 5

In Fig. 4-4, the op hai solucions for $8 ? 10$ are indicated graphically. Fig $4-3$ contains the required solution tree.

FIG. 4-: The Solution Tree

FIG. 4-4 Knapsack Function Values

4.8 SUMMARY

In this chapter we have addressed ourselves to the solution of the integer programming problem known as the knapsack problem. We have ottained the solutions to the dual proolems, both in the linea; and the discrete case, arid have discussed the natural economic interpretation that may be drawn from such solutions. We have used discrete programming duality theory to Justify weingartner's approach t.) caiculating dual prices on the primal resources.

The branch and bound algorithm developed for the multidimensional kiapsack problem in Chapter III has been applied to the single period capital rationing prublem with the consequent simplifications indicated. Finally, a parametric branch and boind algorithin pas been derived which provises for sersitivity analysis studies of the optimal solution for variations of the bugetary ceiling within a certain specified range.

In the following chapter, formulation and solution techniques will be provided for the problem of capital allocation to independeni projacts, where the investment decisions may be deferred to later periods.

4.9 NOTES TO CHAPTER IV

[1] Gilmore, P. C., and R. E. Gomory, "The Theory and Computation of Knapsack Functions", Operations Resear.ch, Nov. - : c ., 1966, pp. 1045-1074.
[2] Balas, E., "An Additive Algorithm for Solving Linear Programs with 0-1 Variables", Operations Rescarch, July - August, 1965, pp. 517-549.
[3] Ichbiah, J. D., Cunnectivity Analysis and Branch and Bound Methods, Ph.D. Thes is, Massachusetrs Institute of Technology, Department of Civil Engineering, August 1967.
[4] Lorin, J. H. and L. J. Savage, "Three Problems in Rationing Capi乞̌al", The Journal of Business, Vol. XXVIII, October 1955, pp. 229-239.
[5] Balas, E., "Duality in Discrete Programming", Technical Report No. 67-5, Operations Research House, Stanford University, August 1967.
[6] Weingariner, H. M., Mathematical Programing and the Analysis of Capital Budgeting Problems, Prentice-Hall, 1963.
[7] Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problen", Operations Researsh, Nov. - Dec., 1965, pp. 8i, -919.
[8] Geoffrion, A. M., "Integer Programming by Implicit Eiumeration and Balas' Method", SIAM Review, Vol. 9, No. 2, 1967, pp. 178-190.
[9] Kolesar, P. J., "A Branch and Bound Algorithm for the Knapsack Problem", Management Sciencz, Vol. 13, May 1967, pp. 723-735.

CHAPTER V

MULT:STAGE RESOURCE ALLOCATION PROBLEMS

5.1 INTRODUCTION

In the preceding chapter we studied the proolem of optimaliy allocating funds among competing alternatives, each requiring investment in a number of time periods and with a fixed horizon, subject to budgetary constraints in each period. An effective solution technique was developed. The purpose of this chapter is to study the projlem of capital allocation among independent projects that arises in various planning contexts, where the projects require fixed outlays in one time period, but the decision of accepting them may be deferied to a later period. An expected net benefit (financial and sociai) is assumed to be known for each project, and the figure of merit adopted is to maximize the total benefit.

We begin by formulating the multistage capital allocation problem as a (0-1) integer prugram. A special case is then considered where capital outlays for all projects do not vary over time and any infationary effects are taken into consideration by modifying the budget ceilings accordingly. The problem is referred to as the mult-knapsack problem. A suitable transformation is performed to obtain an equivaient model which is interpreted as an analysis-synthesis probiem on a bipartite network. The general branch and bound aigorithm of Chapter II is then adapted to provide a conventent solution methid

Finally, a second formuidition for the multi-knapsack problem is derived for which a branch and bound algorithm is proposed. In this case, the solution of the auxiliary problen associated with each node of the solution tree may be obtained by inspection

5.2 MULTIStAGE CAPItAL ALLOCATION MODELS

Consider a certain government agency confronted with the problem of allocating a multistaged budget with ceilings $B_{j} \geq 0, j=1, \ldots, n$, among a set of m independent projects each requiring a unique capital outlay. Let $f_{i j}$ be the expected payoff, detemined from a linear utility function, of investing in project i at time period j. Further, let $a_{i j} \geq 0$ be the capital outiay required for project i if selected for investment at time period j, and $y_{i j}$ the associated decision variabie that may take on the vaiues 0 or 1 depending on whether project \mathfrak{i} is rejected or accepted for investment in period j. Then the problem of selecting a set of projects for investment so that the total utility over time is maximized, while satisfying the funding dependencies represented by the budgetary ceilings, may be formulated as

$$
\begin{array}{ll}
P_{1}: \text { Maximize } & z=\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i j} y_{i j} \\
\text { Subject to } & \sum_{i=1}^{m} a_{i j} y_{i j} \leqslant B_{j} \\
\sum_{j=1}^{n} y_{i j} \leq 1 & , j=1, \ldots, m \\
& y_{i j} \geq 0
\end{array}, \quad, \forall_{i, j} .
$$

where constraints (5.1) express the budget limitations; and where constraints (5.2) serve the double task of guaranteeing that project \mathfrak{i}, if accepted at any one period, incurs a unique capital outlay and, concurreritly with (5.3) and (5.4), that the variable $y_{i j}$ may only take the values 0 or 1.

Problem P_{1} is an all-integer linear programming pioblem with ($m+n$) constraints and :ixn integer veriables for which a feasible solution and a lower bound are immediately available, corresponding to the status quo
or reject-all-projects policy. Observe also that by collapsing the number of time periods to one, the index j may be dropped and thus problem P_{7} becomes, as expected, the ($0-1$) knapsack problem studied in Chapter IV.

The solution to problem P, may be attained by direct application of the branch and bound algorithm of Chapter ii. In this case, when constraint (5.4) is relajed the problem becones the well-knov:n weighted distribution problem, sometimes called the generulized transpuntation problem. Therefore the primal method of Dantzig [1] or the dual method of Balas [2] could in prinifle be used as subalgor: thms ror solution of the auxiliaiy problems associated with each node of the branct: and bound tree.

We shall, nowever, address uurselves to the special case of P_{1} in which the capital outlay for each project remains the same regardless of the pe:•iod chosen for investment; this amounts to assuming non-inflationary costs throughout the horizon of interest. The problem thus obtained has wide application to varrous resource allocation problems.

5.3 THE MULTI-KNAPSACK FROBLEM. AN EQUIVALENT MODEL

Problem P_{1} with the additional condition that the $a_{i j}$ are the same for all j , which we shall call the multe-knapsack problem, is a generalization of Dantzig's knapsack problem. It can be expressed as follows: determine the optimum packing of a set of m articles into a set of n knapsacks, given the desirability $f_{i j}$ of each item for each knapsack, the weight a_{1} of each item, and the maximum weight B_{j} that each knapsack is allowed to carry

This problem is of special importance in the operation of iransportation terminals, where optimal cargo loading into vehicits of varying capacities is desired. Also, it arises in a computer environment: where programs or files of a given size are competing for non-connected fixed size data storage pouls. These a e but two examples of optimization problems that can be nodelled as multi-knapsack problems.

We shall study this problen in teims of an alternative model equivalent to problem P_{1}. Witis this equivalent model, the problem will be interpreted as a network analysis-synthesis problem ritich resembies the plant location problem with fixed charges on links with positive flows. A branch and bound algorithat for the solution of tis problem will also be developed.

Consider problem P_{1}, with a rep sised by d_{1} is alsiussed above. Replacing the se: of va":zoles $y_{i j}$ oy the new varizoies $x_{1 j}=a_{i} y_{i j}$, and letting $c_{i j}=\frac{f_{i j}}{a_{i}}$, we obta"i the fo owing equ-vilent program:

$$
\begin{array}{rl}
\text { P: Maximice } & \sum_{i=}^{m} \sum_{j=i}^{n} \ddots_{j} x_{j} \\
\text { Subjest to } & \sum_{i}^{m} x_{i j} \leq e_{j}, j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j} \leq a_{i} \quad, i=1, \ldots m \\
x_{i j}=0 & 0 \times a_{i}, \forall i, j \tag{5.7}
\end{array}
$$

Problem P is a discrete bivalent linear programing problem where the $X_{i j}$ represent capital out?ays to be determined and the $c_{i j}$ reprosent the utility of project 1 at time reriod j, per un ${ }^{2} t$ of outlay required.

Let us interpret the se: $N_{1}=[; i, 1=1 . . . m$ as a set of "origin" nodes, $N_{2}=[j / J=1, \ldots, n]$ as $a \operatorname{set}$ of "destrnation" nodes, and the set A of ordered pairs $\{i, j i$ as ans joining nodes i and j. Furthermore, let a_{i} be the "demand" o : npuit of node,$~ \in N_{1}$ and B_{j} the "demand" or output of node $J E N_{2}$, ans interpret x_{i} as flow on the arc (i, j). We may then dssociate a bipartite network $G=\left[y_{1}, N_{2}, A\right]$ to problem P; or better still an equivalent network with a single source and a single sink. This letter step may be acheved by adding artificial nodes s and t. and artificial $\operatorname{arcs}(s, 1), \forall i \in N_{1}$ and $(j, t), \forall J \in N_{2}$, with the following associated values: $c_{s i}=0, u_{s 1}=a_{1}$ and $c_{j t}=0, u_{j t}=B_{j}$; where $u_{s i}$ and $u_{j t}$ denote respectively the upper bounds on the arcs $(s, 1)$ and (j, t). The associated netwook is shown in Fig. 5-1. The first number on each arc represents cost and the se:ond represents dre capacity

FiG. 5-1

The multi-knapsack problem therefore may be expressed in terms of network flow theory as an analysis synthesis problem: find the maximum flow from s to t that maximizes cost on the network of Figure 4-1, subject to the restriction that $\operatorname{arcs}(1, j), i \in N_{1}, j \in N_{2}$ are either not used or saturated; and find as well its distribution pattern Note that since the upper bounds on $\operatorname{arcs}(s, 1)$ are a_{1}, if project r is accepted only one arc (r, j) will be activated.

The optimal solution determines which projects will be accepted for investment (not all arcs $(5,1)$ need be saturated); and it determines to which destination node they will be assigned, thus completing the-synthesis portion of the problem

Observe that problem P differs from a standard transportation problem with surplus and deficit in that each origin, if used at all for shipping, must supply a single destination node. (: 1 also difiers in that P is a maximization problem) If, however, the constrint (5,7) is relaxed so that the $x_{1 j}$ are simply restricted to be non-negative, the resulting prngram indeed corresponds to a transportation problem with surplus and deficit inis fact will be employed in proposing a subalgorithm for solution of the auxiliary problemi during our development of the branch and bound solution method in Section 54

The model as presented in formulation P may be extended to consider more flexible cases which might add relevance to the protlem or be adapted
to a more realistic situation. When budget deferrals are allowed, thus transferring unused capital to a later period, the P formulation must be modified, as indicated below, to account for such flexibility. Let sij be the unused budget, if any, at time period j. Then it suffices to modify the constraints (5.5), replacing thein instead with the following one:

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i j}+s_{j}-s_{j-1}=B_{j}, j \div 1, \ldots, n \tag{5.8}
\end{equation*}
$$

where $s_{0} \equiv 0$. We remark that the coefficient of s_{j-1} is one, herice no present worth factor has been considered in $(5,8)$ and thus the slacks simply represent idle costs. Other generalizations may be made, such as lending and borrowing in the capital market. (See for example, [3], Chapters 8 and 9.)

The network representation for problem P with (5,8) instead of (5.5) would correspond to the one of Fig. 5-1 with additional directed arcs: $(n, n-1), \ldots,(2,1)$. These arcs are uncapacitated (uniess deferred expenditure is specifically bounded) and have zero costs.

5.4 DEVELOPMENT OF A SOLUTION IETHOD

We shall derive a branch and bound method for the solution of problem P by utilizing the same terminology and notation employed in Chapter II. We begin by defining the sets S_{1}, T_{1} and Ω_{1} as follows:

$$
\begin{aligned}
& S_{1}=\left\{\underline{x} / \sum_{i=1}^{m} x_{i j} \leq B_{j}, \sum_{j=1}^{n} x_{i j} \leq a_{i}, x_{i j} \geq 0, \forall(i, j)\right\} \\
& T_{1}=\left\{\underline{x} / x_{i j}=0 \text { or } a_{i}\right\} \\
& \Omega_{1}=s_{1} \cap T_{1}
\end{aligned}
$$

We observe that S_{1} is a closed and bounded convex set, since it is defined as the intersection of a finite number of closed convex half
spaces; furthermore, evy ve=tor x with $x_{i j}<0, \forall i, j$ constitutes a lower bound, and, for examp z, \underline{x} with $x_{i j}=B_{j}$ constitutes in upper bound*. Also, T_{1} is a finite non-empty set detemined by the $2^{m} n$ vertices of the rectangular poiyhedron defined by $0 \leq x_{i j} \leq a_{i}, \forall i, j$. Finaily, Ω_{1}, defined as the interseition of S_{1} and T_{i}, is finite, since T_{1} is finite, and non-empty, since at least $\underline{x}=0$ belongs to the interspction δ_{i}. Since Ω_{1} is non-empty, an op:'na, solution to problem P a'mays exists.

Branching opzute: Given a reritn node ℓ of the solution tree with associated sets S_{ℓ} and S_{ℓ}, the tranching is derined by their intersection with the sets

$$
\begin{aligned}
& V_{\ell, r}=\left\{x_{i j} / x_{s t}=0\right\} \\
& V_{\ell, r 1}=\left\{x_{1 j} / x_{s t}=a_{s}\right\}
\end{aligned}
$$

for a given $\mathbf{i}=s$ and $j=t$. The sets rhus defined satisfy the first sufficiency condition of Theorem 2.1, that is:

$$
v_{\ell, r} \cap v_{\ell, r+1}=\left\{x_{i j} ; x_{s t}=0, x_{s t}=a_{s}\right\}=\phi .
$$

Also, since Ω_{ℓ} is a subset of Ω_{l} (by the branching operation) then from (5.7) the $x_{s t}$ components of the vector elements of Ω_{ℓ} must de either 0 or a_{s}. Then $\Omega_{\ell} \cap\left(V_{\ell, r} \cap V_{\ell, r+1}\right)=\Omega_{\ell} \cap\left(x_{i j} / x_{s t}=0\right.$ or $\left.x_{s t}=a_{s}\right\}=\Omega_{\ell}$ and the second condition for sufficiency of Theorem 21 is also satisfied. Finally, since at each branching operation one variabie is fixed to each one of its possibie values, the fin teness of the number of variables assures that only a finite nunber of tranching operations are required before total enumeration of the elements of Ω_{1} is accomplished.

[^5]
5.5 THE AUXiliary PROBL.EM AND ITS SUBALGORITHM

At each iteration of the branch and bound algorithm, associated with each newly-generated node ℓ of the solution tnee, a continuous auxiliary problem A_{l} derived from P must be solved.

Denote by $1_{0} \subseteq A$ the subset of arcs $(1, j)$ e A of the network G for which $x_{i j}=0(1, e$, investment on project i rejected at period j): hy $I_{a} \subseteq A$ the subset of arcs with $x_{i j}=a_{i}$ (i.e., projest accepted in reriod j); and by I, the set of "free" arcs. Then the auxiliary problem A_{l} takes the form

$$
\begin{array}{ll}
A_{\ell}: \text { Maximize } & 2(l)=\sum_{i=i}^{m} \sum_{j=1}^{m} c_{i j} x_{i j} \\
\text { Subject to } \sum_{i=1}^{m} x_{i j} \leq B_{j}, j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j} \leq a_{i}, i=1, \ldots, m \\
x_{i j}=0 & ,(i, j) \in l_{0} \\
x_{1 j}=a_{i} & ,(1, j) \in I_{a} \\
x_{\cdot j} \geq 0 & ,(1, j) \in I
\end{array}
$$

This is a lionsportation type linear program in inequality form with some prohibited routes and where maximization is sought. Therefore, this problem may be solved by any avallable transportation algorithin. In particular, the generalized primal-dual algorithm of Fulkerson [4] is perfectly sulted for this problem. Indeed, at each node r of the branch and bound tree, the solution to the duxiliary problem of the unique

[^6]predecessor node ℓ of r may be used as a starting flow. The out-of-kilver algorithm will then reoptimize this flow according to the status of sets 1_{0} and I_{a} asaciated with node r, if r corresponds to the branch $x_{i j}=0$, it suffices to set the lower and upper bounds on that arc equal to zero. If, on the other hand, the branch corresponds io $x_{i j}-a_{i}$ s the lower and upper bounds will be set equal to a_{i}.

Observe a:so that if an optimal solution to A, has been obtained, given by

$$
{i j}^{}= \begin{cases}0 & , \text { if }(1, j) \in l{0} \\ a_{i} & , i f\left(i, j, \therefore l_{j}\right. \\ 0 \leq x_{1 j} \leq a_{1} & , \text { if }(i, j) \in I\end{cases}
$$

then a ieasible solut: on to P, provided by a rounding operation on \underline{x}^{*}, is:

$$
\hat{x}_{i j}- \begin{cases}x_{1 j}^{*}, & \text { if } x_{1 j}^{*}=0 \text { or } a_{i} \\ 0, & \text { if } 0<x_{i j}^{*}<a_{i}\end{cases}
$$

This simple operation permits the ise of the double bounding technique as well as the rejection operation of tie branch and bound aigorithm, which we proceed to enunciate:

STEP 1. Set $i=1$ and create node 1 Solve A_{1}. If \underline{x}^{*} is such that all $x_{i j}=0$ or a_{1}, stop; the solution is optimal. If at least one $*$ if $\neq 0$ or d_{1}, bound node 1 with $U_{1}=z^{*}(1)$. Round node one to obtain $\dot{\underline{x}}, \hat{z}(1)$. Set $L_{1}=\hat{z}(1)$. Here $U_{1}>L_{1}$. Set $i=i+1$ and go to step :

STEP ; a) BRANOH. Eranch from bounded node \& Create nodes r and $r+1$ and directed arcs (ℓ, r) and $(\ell, r+1)$. Select any $x_{i j}$ such that $0<x_{i j} * a$, fer node l, and branch with $x_{i j}=0$ and $x_{i j} * a_{i}$. Solve A_{r} using the subalgorithi.. and then A_{r+1} based on the
solution to A_{r}. If A_{r} or A_{r+1} are infeasible, exclude them from further zonsideration.
b) ROUND. Rounci nodes r and $r+1$ to obtain \hat{z}_{r} and $\hat{\mathbf{z}}_{r+1}$.
c.1) BOUND FROM EEEOW. Set $L_{i}=\max \left[L_{i-1}, \hat{z}(r), \hat{z}(r+1)\right]$. Reject all nodes with $z^{*}<L_{i}$ 。
c. 2) BOUND FRO:1 ABOVE. Select node ℓ such that $z^{*}(\ell)=\max _{k}^{*}$ $\left[z^{*}(k)\right]$, for current terminal nodes. Upper bound node ℓ with $U_{i}=z^{*}(\ell)$. If $L_{i}=U_{i}$, stop; the feasible solution that provides the lower bound is optimal. Otherwise $L_{i}<U_{i}$. set $i=i+1$ and go to step i.

5.6 ALTEQNATIVE FORMLLATION FOR THE MLlti-KNAYSACK PROBLEM

In this section we present an aiternative formulation for the multiknapsack problem which permits the solution of the auxiliary problems of the branci and bound tree by inspection.

Associated with each project i εN, we introduce a decision variable y_{i} restricted to take the values 0 or 1 , winch indicate rejection or acceptance of the project 1 , respectively.

Then problen? P may be formulated as follows:

$$
\begin{array}{r}
P_{2}: \text { Maximize } z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { Subject to } \sum_{i=1}^{m} x_{i j} \leq B_{j} \quad, j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=A_{i} y_{i}, i=1, \ldots, m \\
x_{1 j}=0 \text { or } a_{j}, \forall i, j \\
y_{i}=0 \text { or } \quad, \forall i
\end{array}
$$

Here constraints (5,11) and (5.13) establish the fact that, if project \mathfrak{i} is accepted, $y_{i}=1$, the total outlay over all time periods is a_{i}. In addition, constraints (5.12) guarantee that ihe outlay a_{i} will be disbursed in only one of the stages considered.

We may express P_{2} in a more convenient form for developing a solution method, as follows:

$$
\begin{array}{r}
P_{2}: \text { Mákimize } z=\sum_{i=1}^{n} \sum_{j=:}^{0} c_{1 j} x_{1 j} \\
\text { Subject to } \sum_{i=1}^{\sum_{i=1} x_{i j} \leq B_{j}, j=1, \ldots, n} \\
0 \leq x_{i j} \leq a_{i} \quad, \forall i, i \\
\sum_{j=1}^{n} x_{i j} / a_{i}=0 \text { or } 1, \forall i \\
 \tag{5.18}\\
x_{i j}=0 \text { or } a_{1} \quad, \forall i, j
\end{array}
$$

We cbserve that, if the discrete constraints (5.17) arid (5.18) are relaxed, the resulting linear program, (5 14) subject to (5.15) and (5.16), may be solved by inspeciion. Indeed, is is composed of n mutually independent linear programs, each one associated with one time period $j \in N_{2}$

Under the assumption of non-negative c_{i}, and after ordering the $c_{i j}$ for each $\mathrm{j} \in \mathrm{N}_{2}$ in decreasing order, the optimal solutions may be obtained by an expression analogous to (325)

The branch and bound algorithm may therefore be applied directly to problem P_{2} above

At each step of the algorithm, one variable, not currently satisfying (5.18), is fixed to its possible values, thus defining the tranching operation.

We ramark that for a certain node of the solution tree the values of y_{i} calculated according to (5,17) may be greater than one; in fact, they may be as large as n, where n is the number of time periods.

Note also that a rounding operation may be performed at each iteration. However, if the solution of the auxiliary problem results in a certain project 1 with capital outlays a, in varlous time periods, more than one feasible solution to P_{2} may be obtained by application of the rounding operation.

When a comparison is made of the branch and bound algorithms developed in Section 55 and the one indicated here, we may point out the following:

The first formulation P requires the solution of a network flow problem at each node, as opposed to the solution of n simple linear frograms solved by inspection when the formulation P_{2} is used. However, the second approach in general requires the search of a larger number of nodes before optimality is reached.

5.7 OPTIMAL ALLOCATION OF PROGRAMS TO PRIMARY MEMORY

We conclude this chapter with the formulation of a problem which is related to the multi-knapsack case and which arises in the context of allocating programs to primary memory in a computer system.

Consider a set of m items of size $a_{i}, i=1, \ldots, m$ that are to be loaded intof n knapsacks of apacity $B_{j}, j=1, \ldots, n$. We assume $\sum_{j=1}^{n} B_{j} \geq \sum_{i=1}^{m} a_{i}$. The problem is to assign items to knapsacks so that the minimum number of knapsacks is used. The use of each knapsack incurs a fixed cest f_{j}, and thus the total cost of using the knapsacks is to be mintmized.

The problem may be formulated as follows:

$$
\begin{align*}
& P_{3}: \text { Minimize } z=\sum_{j=!}^{n} f_{j} y_{j} \tag{5.19}\\
& \text { Subject to } \sum_{i, 1}^{m} x_{1 j} \leq B_{j} \tag{5.20}\\
& \sum_{j!~}^{n} x_{1 j}=a_{1} \tag{5.21}\\
& \sum_{1}^{m} x_{i j} \leq m y_{1} \tag{5.22}\\
& y_{i}=0 \text { or }: \tag{5.23}\\
& x_{1 j}=0 \text { or } a_{1} \tag{5.24}
\end{align*}
$$

where the decision variable y_{j} is assuciated with each knapsack.
Constraints (5,22) guarantee that no flow will occur from nodes i εN_{1} to node $\mathrm{j} \varepsilon \mathrm{N}_{2}$ if $y_{j}=0$.

Again, froblem P_{3} may be solved by direct application of the branch and bound technique We shall indicate here that if constraints (5.23) and (5.24) are relaxed, the resulting linear program may be solved by means of a network flow algorithm.

Indeed, since we are minimizing, the optimal solution to P_{3} without discreteness constraints will necessarily satisfy (3.22) as a strict equality:

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{x_{1 j}^{0}}{a_{i}}=m y_{j}^{0} \Rightarrow y_{j}^{0}=\frac{1}{m} \sum_{i=1}^{m} \frac{x_{1 j}}{a_{i}} \tag{5.25}
\end{equation*}
$$

Substituting (5 25) in the objective function, the problem to be selved is:

$$
\begin{aligned}
& \text { Minimize } \quad z=\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{f_{i}}{a_{i}} x_{i j} \\
& \text { Subject to } \sum_{i=1}^{m} x_{i j} \leq B_{j} \\
& \sum_{j}^{\sum} x_{i j}=a_{i} \quad, x_{i j} \geq 0
\end{aligned}
$$

which obviously corresponds to a transportation problem, and thus a network flow algorithm may be employed for its solution.

5.8 NDTES TO CHAPTER V

[1] Dantzig, G. B, Linear Progranming and Extensions, Princeton University Press, 1963, Ch. 21.
[2] Balas, E., "The Dual Method for the Generalized Transportation Problem", Management Science, Vol. 12, March 1966, pp. 555-568.
[3] Weingartner, H. M., Mathematical Programming and the Analysis of Capital Budgeting Problems, Prentice-Hall, Inc., Englewood Cliffs, 1963.
[4] Fulkerson, D. R., "An Out-cf-Kilter Method for Minimal Cost Flow Problems", Juurnal Soc. Indust. Appl. Nath., Vol. 9, 1961, pp. 18-27.

CHAPTER VI

the multistage network design probiem

6.1 INTRODUCTION

In this chapter we shall propose a programming model aimed at determining an optimum transportatior, network development plan for a metropolitan area. The model to be derived synthesizes the best network configuration among a set of suggested improvements maintaining expenditures within expected future budget ceilings. The budgetary constraints, projected into the future from trend studies of past transportation expenditures, are assumed to be given up to a fixed horizon in a predetermined staging sequence. The model furthermore assumes the continuity of a stable technology over the entire period of interest.

The figure of merit selected for optimization is the total user cost over all time periods. The required input data are the expected origin-destination demands for all time periods over the existing network; the subset of existing links selected for capacity improvement with the corresponding capital requirement; and/or the construction costs of specific links to be added to the current network and their total improvement of capacity if selected for construction. Also required is the topology of the existing network, with link carracities and estimated users cost per link for all periods of interest.

The problem descrited is interpreted as a capital investment problem with dependent projects, where the des irability of combinations of projects wlll be reflected in the redistribution of flow volumes and therefore in a reduction of total users cost. The projects' interdependency relationship, are taken into consideration by imbedding into the basic model a network flow distribution submudel. In this fashion, the nultistaged network design prot?em is interpreted as a combined network flow and capital budgeting nrobiem.

The various topics considered in this chapter are oisanized in the following manner: we begin by presenting a general overview of the urban transportation planning process with emphasis on the various classes of network improvement evaluation models, their characteristics and main drawbacks. "ext, a discussion of the various levels of network improvements and a - jiew of existing models for each type of improvement is presented. With this background material, the basic multistaged model is developed in terms of a highly-structured mixed-integer linear programming formulation. The structure of the model is then thoroughly analyzed in order to propose a convenient optimization technique for carring out its solution. The propused solution procedure is the partitioning algorithm of Benders (cf. Appendix A) which fully utilizes the decomposabie nature of the multi-stage problem.

6.2 THE URBAN TRANSPORTATION PLANNING PROCESS

The need for an integrated long-range transportation plan for metropolitan areas has been widely recognized by civil engineers, city planners, economists, sociologists, city officials, etc. in the postwar era, as a result of the explosive increase in the size and complexity of urban areas. The need for such a master plan has been officially endorsed by Congress in the Federal-Aid Highway act of 1962, which grants federal aid to urban areas of more than fifty thousand population, provided that their projects are based on "a continuing comprehensive transportation planning process...".

The planning process is primari'y concerned with forecasting future demand for transportation in a certain study area, as well as planning transport facilities that provide a satisfactory level of service while maintaining the corresponding capital expenditures within expected future budget ceflings.

Comprehensive studies such as the Chicago Area Transportation Study (CATS), Penn-Jersey Transportation Study, etc., have been carried out from a systems viewpoint; the aftempt to consider all the interacting elements that affect the demand for transportation, and to plan new faciitites in the light of their interaction with the existing network
(as opposed to making local decisions or accepting small-scale palliative solutions). For a general description of different issues akin to urban transportation stidies see Moyer [1].

The celation of urban development to demand for transportation and the effect of new facilities upon demand patterns have been carefully identified. Past research has focussed on the characteristic steps of the planning process; quantitative approaches, such as use of mathematical models and techniques, have been suggested for each step of the planning process, and much experience and momentum has been gained from these studies.

Most transportation planning models are based on expeditinn the extrapolated trend of economical and environmental development.

Although the transportation studies carried on for various metropolitan areas had to treat different problems according to the speciric areas of interest, they present virtually the same pattern in their solution approach. This pattern indicates the fundamentai steps of the transportation planning process, which we proceed to enumerate.
i) Inventories for base year:

These consist of inventory, for a reference year T_{b} (base year), of the relevant factors that will affect the future demand for transportation. The inventorles usually considered, mostiy based on censuses, are listed below.

```
                                    1 land use inventory
11 population inventory
ili transportation inventory
    iv trend of transportation expenditures
```

i1) Inventories for target year: These a.e developed by foriscasting, for the target year T_{t} (usually a 20 or 25 year interval), the changes in the bise uear inventories.

This forecasting is usually attained, for each type of inventory, by means of prediction models of varying sophistication Martin, Mermott and Boae [2] present an analysis and detailed description of various models often used in the planning process.

It is interesting to observe that these first two steps are inveriably required for an integrated study of the development and improvement of any kind of facilities in a metropolitan area.
iii) Transportation Analysis:

Based on the demand for transportation at T_{B} and on both the base year and target year inventories, the future demand for transportation is forecast, and a master transportation plan is developed. This arialysis constitutes the core of the transportation planning process and its accuracy will be a direct function of the accuracy and completeness of the forecasting analysis.

6.3 TRANSPORTATION ANALYSIS

We shall briefly mention the now well-established steps into which the transportation analys is phase is subdivided. For each step, welldeveloped models are available, and a substantial amount of research is currently underway seeking to verify and improve the accuracy of such models.
i) Trip Generation. The purpose of trip generation is to determine the number of trips starting (or ending) in a particular zone of the study area for specified future years.
ii) Trip Distribution. Trip distribution is the process of assigning destinations, by means of a distribution model such as the gravity model, to the trips generated in each zone of the study area.
iii) Modal Split. The modal split analysis is used to estimate the future breakdown of trips among the available transportation modes. The models most frequently employ multiple regression analysis, and are used to predict future modal split for the modified values of the input variables; this clearly implies that no major changes in transportation technology are expected during the period of interest.

The modal split phase assigns each future traffic demand by mode to the corresponding transportation network for that mode.
iv) Traffec Assigmert. The objective of the traffic assignment is to determine flow patterns in specific transportation networks, where flowis are associated with the different modes adopted in the planning process. This step, being of special interest for the present work, will be treated in more detail in forthcoming sections.
v) Thansportation System Evaluation, The traffic assignment step is usually performed for each mode and for alternative transportation networks, with the main objective of obtaining substantial information on the relative performance of the alternatives. This will hopefully permit the rational selection of the transportation system that will hest meet the future demand with a suitable level of service.

The evaluation of the various alternatives is usually done by standard techniques, such as cost-benefit analysis or rate-of-rezurn method. In a forthcoming section this evaluation step will be analyzed and identified as a capital budgeting problem which can be systematically and quantitatively attioked

The output of the evaluation phase, possibly obtained after several iterative cycles of the totai process, will be the desired long-range urban transportation plan for the area of interest

6.4 THE TRAFFIC ASSIGNMENT PRCBLEM

In the context of transportation planning, the term traffic assignment means the determination of flow volumes on the links of a given transportation network, where volumes per unit of time are specified between each zonal pair in a set of origin-destination pairs. The traffic assignment permits the evaluation of the performance of network alternatives.

The question of how the flow distributes itself over the network constitutes one of the most important issues in transportation planning. Two different criteria, enunciated by Wardrop [3] and formalized in mathematical form by Beckman et al. [4] and Charnes and Cooper [5], have initiated the development of two major classes of traffic assignment models. These are generally given the titles of descruptive (predictive) and ncumative (prescriptive) models. Each Wardrop postulate suggests that the flow distributes itself over the netwo. k according to one of two contrasting extremal principles:
i) Postulate of equal travel times: for a flow assignment, the travel tume between any two points on the netwcrk will be the same on all routes used and less than the travel time on any other path joining the same two points
if) Postulate of overall minimization: for an optimal flow assignment, the average travel time for all users of the network attains its minimum value.

Descriptive Traffe: Assignnent Models

This family of traffic assignment models is based on Wardrop's princtpie of equal travel times. The computer implementation of such models has acquired great momentum as a result of their use in transportation studies of major metropolitan areas during the early sixties. These programs implicitly use the game theory mociel of Charnes and Cooper, where all travelers seek to minimize their own travel time,

The flow distribution is achieved by iteratively assigning traffic from each origin node to all destinations according to current shortest path-routes. After completion of each iteration, the resultant travel times on links are updated according to their current loads and the origins will again take turns assigning portions of their flows.

The descriptive models used in different transportation studies present variations in their actual calculation, but they are all based on the principies indicated above. In [6] and [7] the reader will find a complete description and comparison of the various models in use today.

Nomative Traffec Assegnoment Modets

This class of models is based on Wardrop's postulate of overall minimization and on the traffic flow analysis of Beckman et al, and Charnes and Cooper: flows distribute themselves so as to minimize the total travel time in the system, ds opposed to individual travel times.

This citimization problem has been formulated by Charnes and Cooper [5], for congested networks, as a non-linear programing problem; the nonlinearity results from the fact that !ink travel times increase nonlinearly w th flow volumes. They further simplify their model by suggesting a plece-wisa linearization of ine travel time-volume relationship. accomplished by introducing multiple capacitated arcs with increasing travel times. The resulting model is a linear program known as the multicopy-cosc-mifinization network flow problem. This problem has been
thoroughly analyzed and exploited by Pinnell and Satterly [8] and by Hershtarfer [9].

Jorgensen [10] has studied both classes of traffic assignment models, and shows that for the uncongested case (rural networks), both the descriptive and normative solutions give the same flow distribution pattern:

The actual computer implementation of normative models requires a linear programming routine capable of handling a potentially large number of constraints; or alternatively, with the additional capability of expioiting the highly-structured form of the model by conveniently decomposing the proolem ints more tractadle subprograms.

6.5 TRANSPORTATION NETWORK IMPROVEMENTS

The main goal of the traffic assignment is to determine the level of service provided by a given network for a set of demands previously specified. When the demand expected for the target year is assigned to the network configuration of the basic year, it is likely that the latter will not provide a satisfactory level of performance. This condition will be reflected in the final assignment by an excessive number of links operating under congestion.

On the other hand, if new Lirban areas are expected to be developed by the target year, the network will have to be expanded to provide transportation facilities to these areas.

This situation clearly calls for a network improvenent plan to meet the forecasted demand, making use of the limited capital resources expected to be available for such purposes during the period of interest. Various levels of improvement, some of which are listed below, may be undertaken to cope with the increasing demand pressures.
i) Augmentation of capacity in existing links. This improvement may be realizable by varicus means. ranging from enforced parking restrictions in certain arteries to new lane construction and more expedient traffic coritrol systems.

Abstract

ii) Rearrangement of one-way and two-w: streets to provide an optimal configuration.

iii) Addition of new linkr to the existing network.
iv) For public transportation, construction of new terminal facilities and links to connect these facilities with already existing ones.
in practice, the ifinal long-range transportation plan may call for a mixed strategy utilizing various modes of network improvement. It is obvious that a transportation planner has to analyze a iarge number of improvement aluernatives, before a final plan is adopted. The tro classes cf traffic assignment mudels studied previously provide totally differentic approaches to solving such synthesis problems.

6.6 NETWORK SYNTHESIS VIA DESCRIPTIVE RODELS

To describe the synthesis solution when descriptive models are empioyed, let us assume that a specific set of links proposed for construction constitute tue type of improvement prescribed.

It is obvious that each project may not be analyzed independently of the others, since the total network performance is highly dependent on the combination of projects considered. On the other hand, if m_{i} is the number of possible link additions, $?^{r^{m}}$ different alternatives exist, and its exhaustive analysis is clearly imposstble for evelı moderateiy large m. The usual practice in the ecormic evaluation of traif:c networks is to select a priori, a smail subset of the potentially large number of alternative network; and accept the one that provides the :jest "measure of effectivenas $5^{\prime \prime}$.

To determine that masure 0 : effectiveness, a traffic assignment is required for each altemative network as provided by a given descriptive model. The output of the traffic assignment (average daily traffic for each link) may te converted into users' cost. The accumuiated users' cost for ine entire network, and the total capital invostment for the plan presently considered, are the parameters needed for estimating a measure of effectiveness for that project. A detailed description of the various elements required in such a process: as well as procedures and
methods to obtain them, may be found in the work of Haikalis arid Joseph [11]. When the process just described has been completed for the subset of plans under analysis, the usual practi e is to apply a benefit-cost ratio analysis, a rate of return on marginal irivestment analysis, or some other classicial economic method, to determine the best alternative amorg those which have been preselected for consideration.

When a budgetary constraint is imposed on improvement expenditures, the synthesis problem may be solved by direct application of optimization methods for combinatorial problems. In particular, a direct search technique or an implicit enumeration method may be in order. We conjecture here that it muy be desirabie to apply an implicit enumeration technique as described below. First, we assume th. : as the number of links added to the network increases, the total user ast derlines. Let the MOE be the user cost, with B the budgetary celling n:' capital investment, and \mathcal{X} an m component binary vector associated with ine acceptarse or rejection of the links considered for construction. Hence, the new link addition problem may be expressed in terms of B and the project costs a_{j} as

$$
\begin{align*}
& \text { S : Minimize } z=f(y) \tag{6.1}\\
& \text { jubject to } \quad \sum_{j=1}^{m} a_{j} y_{j} \leq B \tag{6,2}\\
& y_{j}=0 \text { or } 1 \tag{6.3}
\end{align*}
$$

where z is the total users cost as a function of the vector y.
Problem S is a constrained optimization problem that may be interpreted as capital rationing for dependent projects. The dependency appears in the objective function (6.1 , which cannot be expressed in closed mathematical form, but can only be evaluated as a result of a traffic assignment for each vector y, (each network configuration) considered.

SOLUTION METHOD. We shall propose an implicit enumeration technique based on the general algorithm of Chapter II, (See[18] for a complete presentation), where

$$
\begin{align*}
& s_{1}=\left\{y_{j} / 0 \leq y_{j} \leq 1\right\} \tag{6.4}\\
& T_{1}=\left\{y_{j} / \sum_{i=1}^{m} \theta_{j} y_{j} \leq B, y_{j}=0 \text { or } 1\right\} \tag{6.5}
\end{align*}
$$

$$
\delta_{1}=S_{1} \cap T_{1}=T_{1}
$$

The auxiliary problem becomes:
where J is the set of free links, J_{0} the set of rejected links and J_{1} the set of accepted links. Under the assumption that the value of z does not increase, as the number of links added to the network increases, the optimal solution to the optimization problem A_{l} is

$$
y_{i}^{*} \cdot\left\{\begin{array}{l}
0, \text { if } j \in J_{0} \tag{6.7}\\
1, \text { otherwise }
\end{array}\right.
$$

where the value $z^{*}(\ell)$ is determined after the output of a computer program, which performs the descriptive traffic assignment and converts the link traffic volumes into user cost, is obtained. The branch and bound algorithm may then be stated as follows:

$$
\begin{aligned}
& A_{\ell}: \text { Minimize } \quad z=f(\underline{y}) \\
& \text { Subject to } 0 \leq y_{j} \leq i \quad, j \in J \\
& y_{j}=0 \quad, j \varepsilon J_{0} \\
& y_{j}=1 \quad, j \in J_{1}
\end{aligned}
$$

STEP 1. Set $i=1$. Generate node 1 by solving a traffic assignment with $v_{j}^{*}=1, \forall j$. Let $2^{*}(1)$ be the total user cost. Calculate $B^{*}=\sum_{j=1}^{m} a_{j} y_{j}^{*}$, If $B^{*} \leq B$, stop; the network configuration is optimal. Otherwise, bound node 1 with $L_{1}=2^{\star}(1)$. Set $1=1+1$ and go to step i.

STEP i
a) BRANCH. Branch from bounved nocie ℓ. Select one y_{k} to be fixed to zero and one. Create nodes r and $r+1$ and directed arcs (ℓ, r) and $(\ell, r+1)$ Solve the tiaftic assignment corresponding to A_{r} with $y_{k}=0$, adding k to the set J_{0} Solve the traffic assignment corresponding to A_{r+1}, with $y_{k}=1$, adaing k to J_{1}.
b) BOUND. Select node ℓ such that $z^{*}(\ell)=\min \left\{z^{*}(r)\right\}$, for current terminal nodes. If $\sum_{j=1}^{m} q_{j} y_{j}^{*} \leq B$ for node ℓ, stop; the solution associated with node ℓ is optimal. Otherwise, set $i=i+1$ and $g o$ to step 1 .

6.7 NETWORK SYNTHESIS VIA NORMATIVE MODELS

The important advantage of nomative models lies in their flexible handling of synthesis problems, since the intrinsic nature of optimization problems is such that a convenient solution technique takes care of the combinatorial aspects, and finally selects the best project combination.

A substantial amount of research has been undertaken in this area, and various model formulations have evolved from the study of various types of network improvement problems.

The technique of continuous augmentatior of capacity on existing links has been formulated by Garrison and Marble [12] and by Quandt [13]. In * the latter model, the construction cost appears as a budgetary constraint, rather than as part of the objective function, as treated by Garrison and Marble.

Hershdorfer [9] studied the optimal one-way and two-way street configuration by extending Chicnes and Cooper's multi-copy network model by an ad he: introduction u: fecision variables into the model.

Hershdorfer, and also Roberts and Funk [14] have used Dantzig's scieme of introducing decision variables in the upper-bounding constraints on certain links, thereby obtaining a suitable formulation for the new link addition problem. Roberts and Funk consider rural network improvement subject to a budgetary constraint as opposed to Hershdorfer, who essentially assumes an infinite budget and congested networks. Recently, Ridley [15] has developed a combinatorial approach which he calls the "method of bounded subsets" for solution of the discrete augmentation of capacity problem.

The branch and bound algorithm developed in Section 6.6 is equally applicable to the new link addition synthes is problem when normative models are employed. In this case, the subprograms A_{l} correspond to multicopy network flow problems, which can be sclued by means of a decomposition form linear progranming code.

The simultaneous optimal node and link selection for an urban public transportation network, subject to a budgetary constraint, has been solved by Ichbiah [16] by means of a parametric branch and bound technique. His model does not directly consider flow volumes on the proposed network.

The set of models described above study network improvement problems for a single time period (base year to target year). In fact, the budget available for transportation investments is commoniy appropriated in a multi-stage manner. Although the models indicated may be applied successively for various time increments, what the long-range transportation plan calls for is a sequence of improvements of the traffic network so that a convenient figure of merit is optimized over the total sequence of planning periods. The purpose of this chapter is to formulate a normative model that represents the goals indicated above, for different types of improvements.

6.8 NET:URK IMPROVEMENTS OVER TIME

Based on the discussion of previous sections, we may conclude that the preparation of a long-range transportation plan for a target year has been sufficiently studied, and that a variety of mathematical models are available to conveniently attack the problem. Considering the fact that a master plan would be actually implemented in a stage by stage fashion, and that available funds for transport expenditures are usually appropriated in fixed amounts for each planning period, a model taking this staging into account seems more appropriate.

Research on network improvement overtime has been done by Kalaba [16] for communication networks. The probiem that he considers, howeve is continuous augmentation of existing links' capacities. Roberts [17] has studied the muitistaged link addition problem and proposes a solution method based on solving each stage, commencing from the last one, with a budget equal to the sum of the budgets up to the stage being considered. Links not accepted in the last period, are deleted from further consideration. His solution does not necessarily provide an optimum when the goal is to minimize a figure of merit over the entire horizon.

Before developing a normative model for the multistage link addition problem, we shall mention certain important aspects of the problem.

In the preparation of a transportation plan, before decisions can be made regarding facility improvements which are feasible in terms of cash flow, a preliminary planning of new facilities is required. The study of deficienctes in capacity provides a basis for such preliminary design. We shall assume that a set of possible new facilities, from which no optimum plan or subset is to be selected has been established.

We assume further that the construction costs for a specific type of facility have been previously obtained. This is obviously difficult since in order to obtain them, the facility must be located; and to estimate cost, certain standards must be fixed, which depend in general on the flow volumes likely to use the facility.

Finally, the future demands for transportation require: by the model have been derived from forecasted land use patterns, but the new facilities provided in the planning pertod will in turn modify the land use
development pattern. We shall not consider this interaction directly, but it could be treated with an iterative application of the nodel.

With these assumptions made we proceed to develop an optimization model that permits us to determine, for normative traffic behavior, the best improvement plan in time and space.

6.9 ANALYTICAL FORMULATION

Consider the graph $G=[R, A]$ consisting of nodes which are denoted in any order by the sequence of numbers $1,2, \ldots, N$ and of directed arcs (i, j) joining nodes of the set N. The set of all arcs is denoted by A, and will be partitioned into two sets X and Y such that $X U Y=A$. The set X conntains the set of all arcs of the existing network of interest. The set Y contains all arcs which form the set of proposals to be added to the network over n time periods. Note that if $X=\Phi$ we are confronted with a complete synthesis problem.

Let the amount of flow of copy a (here a copy associates all of the traffic flowing from or to a specific origin or destination) associated with $\operatorname{arc}(i, j) \in A$ at stage k be $x_{i j k}^{\alpha}$. Denote by $c_{i j k}$ the discounted unit cost of travel on arc (i, j) at stage k, and by $u_{i j k}$ the capacity or upperbound on the flow over arc (i, j) at stage k.

For each (i, j) εY, let $a_{i j k}$ be the capital outlay required to build arc $(1, j)$ if selected for construction at period k.

Denote by $r_{i k}^{a}>0$ the net amount of flow into node i of copy a at time period k, (or $r_{i k}^{\alpha}<0$ if the net flow is out), and by E, the nodearc incidence matrix which describes the network G. The total budget ceilings available at time period k will be denoted by B_{k}. Let n be the number of time periods and N the total number of copies.

The problem of optimally selecting link proposals for construction is that of satisfying the budgetery constraints at each period and minimizing the total user cost over the entire interval. It may be fonmuated as follows:

$$
\begin{align*}
& \text { M: Minimize } \quad z=\sum_{\alpha=1}^{N} \sum_{k=1}^{n} \sum_{(i, j) \varepsilon A} c_{i j k} x_{i j k}^{\alpha} \tag{6.8}\\
& \text { Subject to } \tag{6.9}\\
& \sum_{j=1}^{N} e_{i j} x_{j j k}^{\alpha}=r_{i k}^{\alpha}, \forall i, \alpha, k \\
& \sum_{\alpha=1}^{N} x_{i j k}^{\alpha} \leq u_{i j k} \quad,(i, j) \in x, \forall k \tag{6.10}\\
& \sum_{\alpha}^{N} x_{i j k}^{\alpha} \leq u_{i j k} y_{i j k},(i, j) \in \gamma, \forall k \tag{6.11}\\
& y_{i j k}-y_{i j k+1} \leq 0 \quad,(i, j) \varepsilon \gamma, k=1, \tag{6.12}\\
& \ldots, n-1, n>1 \text { (*) } \\
& \left(i_{i, j) \varepsilon Y}{ }^{a_{i j k}}\left(y_{i j k}-y_{i j k-1}\right) \leq B_{k}, \forall k\right. \tag{6.13}\\
& x_{i j k}^{\alpha} \geq 0 \tag{6.14}\\
& y_{i j k}=0 \text { or } 1 \tag{6.15}
\end{align*}
$$

In this formulation, constraints (5.9) represent the conservation of fluw equations for all copies and all time periods, with $e_{i j}$ being the corresponding element of the node arc incidence matrix E.

The constraints (6.10) constitute the upperbounding constraints on the suin of all copy-flows utilizing originally existent arcs $(1, j) \in X$. For propused arcs, $(i, j) \in \gamma$, a set of decision variables $y_{i j k}$ has been introduced which can take the binary values 1 or 0 as in:icated by (6.15), depending on whether or not arc (i, j) e Y is available for use at time

[^7]period k. Constraints (6.11) therefore guarantee that for a non-constructed arc, the corresponding flows will vanish ($y_{i j k}=0$), or otherwise that they do not excoed the provided capacity ($y_{i j k}=1$)

The set (6.12) acts as a "turn-on switch", guaranteeing that if a certain link is adopted for investment at time period s (i.e., yijs $=i$, with $\left.y_{i j k}=0, k<s\right)$, it will remain avaliable for utilization in subsequent periods (i.e., $y_{i j k}=1, k=s$).

Constraints (6.13) represent the budgetary constraints; here $y_{i j 0} \equiv 0$ for all ($\left.i, j\right) \in Y$. The difference of the decision variables for two subsequent time periods, in addition to (6.12), guarantee that a single capital outlay is disbursed for each project.

If the problem being considered calls for multiple outlays once a link has been selected for construction, e.g. when maintenance costs are considered, it suffices to modify the budgetary constraints (6.13) and replace it by

$$
\begin{equation*}
\sum_{(i, j) \varepsilon Y}^{\varepsilon} a_{i j k} y_{i j k} \leq B_{k} \quad, \forall k \tag{6.16}
\end{equation*}
$$

Finally, relation (6.14) simply expresses the non-negativity conditions on the arc flows for all time periods.

REMARKS. He observe that for the single time period case, the index k may be dropped; constrainis (6.12) will no longer have any meaning and may also be dropped. Constraints (6.13) reduce to a single budgetary constraint and problem M becomes the link-addition probiem as formulated by Roberts [17], except for the fact that coristruction costs are not part of the objective.

If both indices α and k are relaxed, the resulting model becomes a single period problem of capital investment in links of a generai homogenenus cormodity network.

This problem is somewhat similar to the snapsack problem considered in Chapter IV. The main difference, however, is that the payoff function for a certain combination of links may not be detemined until a cost minimization network flow problem for the configuration under analysis is solved.

Finally we remark that the objective function is linear and represents the total user cost over the entire interval of interest. Therefore, model M in its most generil form is a ($0-1$) mixed-intege linear program of a very complex nature, as may be imnediately recognized, but with important structural characteristics that we shall identify in the fo?lowing section.

6.10 SIRUCTURAL CHARACTERISTICS OF THE MODEL

Let us assume that the node-arc incidence matrix E describing the network $G=[N, A]$ is constructed in such a way that all arcs $(i, j) \varepsilon X$ occupy the first part of the matrix, while aris (i,j) ε Y will be associated with the remaining columns of E. Accordingly, we define the following partition for $E, E=[E, \hat{E}]$.

Let $\underline{x}_{k}^{\alpha}$ and $\underline{\underline{x}}_{k}^{\alpha}$ be the flow vectors for arcs $(1, j) \in X$ and $\left.i i, j\right) \varepsilon Y$ respectively, for copy a in time period k. Denote by \dot{z}_{k} the vector of all decision variables at time period k, by $\underline{r}_{k}^{\alpha}$ the demand vector for copy a in period k, and by u_{k} the upper bound vector on the flow of arcs $(i, j) \varepsilon X$ at time period k. Finally, according to the partition defined for E, let $\tilde{\underline{c}}_{k}^{\alpha}$ and \tilde{c}_{k}^{α} be the user cost vectors for $\operatorname{arcs}(i, j) \in X$ and $(i, j) \in Y$ respectively, for copy a in time period k.

Our model M may then be rewritten in the condensed form depictea in Table $6-1$. Here 1 is the identity matrix, U_{k} is a diagonal matrix having the upperbounds $u_{i j k}$ for $(1, j) \varepsilon Y$ as diagonal elements, and a_{i} is the vector representing Eapital outlays in perlod k for all $(1, j) \in \psi$. The non-negativity conditions on the flows and che einary values of the $y_{i j k}$, although not explecitly indicated in Table $6-1$, are to be satisfied.

The arrangement of the variables in Table $6-1$ is highly suggestive of a partition 'nto two sets. the first embodying the derision variabies $y_{k}, \forall k$, and the second $a i^{\prime}$ the $+10 w$ variables for all the periods. Furthermere, Tatie 6-1 presents a similar structure to that of the class of problenis presented in Appendix A, (sse Page A-3). with additional simplifications. Indeed, using the noiation of the Afpendix, we observe that all ine B mat:ices are identical in our problem and are highly structured as we' ', sage:ting that additional enp'oltation is possible.

TABLE 6-1

The A matrices are composed mostly of zeros except for the diagonal submatrices U_{k}. Finally, observe that G_{-}, the cost associated with the binary variables, is zero in this case, a fact which will further simplify calculations.

6. 11 SOLUTION MGTHID BY PARTITIONING

In this section we discuss the partitioning technique of Benders as presented in Appendix A when it is applied to our multistaged link addition problem M. We shall use approximately the notation of Appendix A. In the present case, the set 5_{0} is defined by all $y_{i j k}$ satisfying constraints $(6,12),(6,13)$, and $(\overline{3}, 15)$. At each step of the al gorithm, and once the auxiliary ($0-1$) problem 3' has been solved yielding the optimal vaiues $\tilde{\mathbf{y}}_{i j k}^{0}$, these will be used to solve cach one of the subprograms:

$$
\begin{align*}
& P_{k}: \operatorname{Minimize} \quad z=\sum_{\alpha=1}^{N}(i, j) \varepsilon A c_{i j k} x_{1 j k}^{\alpha} \tag{6.17}\\
& \text { Subject to } \sum_{j=1}^{N} e_{i j} x_{i j k}^{\alpha}=r_{i k}^{\alpha}, \forall i, \alpha \tag{6.18}\\
& \sum_{\alpha=1}^{N} x_{i j k}^{\alpha} \leq u_{i, j k} \quad,(i, j) \varepsilon X \tag{6.19}\\
& \sum_{\alpha=1}^{N} x_{j j k}^{a} \leq \mu_{1 j k} \tilde{y}_{i j k}^{0},(1, j) \varepsilon Y \tag{6.20}
\end{align*}
$$

$$
\begin{equation*}
x_{i j k}^{a} \geq 0,(1, j)=A, \forall a \tag{6.21}
\end{equation*}
$$

for all values of k (all itme perlous). However, problem P_{k} is essentially a multi-copy network flow problem and therefore, at each iteration of the partitioning algoritnm; n problems of the forn P_{k} must be solved for the gi:en velues $\dot{y}_{1 j k}^{0}$ Each of these problems presents in turn ableckanguidr structure and thus J higher level of decomposition maj be applied.

For example, the Dantzig and Wolfe decomposition method, as investigated by Pinnell [8] may be applied. When this scheme is used, the solution of each subproblem at each iteration of the decomposition procedure resuces to firiding its shurtest path irpe.

As for the second part of the partitionirig algorithm, the solution of a:. all-intager ($0-1$) programing pr.bleni is required with one or two additional constraints at each iteration.

The nroblem presents the following form:

$$
\begin{equation*}
B^{\prime}: \operatorname{Min} \operatorname{mize} \quad 2: \sum_{k=1}^{n} y_{k} \tag{6.22}
\end{equation*}
$$

Subject to

$y_{i j k}-y_{i j k: 1} \leq 0 \quad,(i, j) \in Y, k=1, \ldots, n-1$
$\sum_{(1, j) \subset f} a_{i j k}\left(y_{, i k}-y_{i j k-1}\right) \leq B_{k}, \forall k$
$y_{i, j k}=0$ or : $, \forall(i, j) \in r, \forall k$
y_{k} unrestricted, $\forall k$
where [$\hat{F}_{i k t}, \pi_{l j k t}$] are the comporenis of an extreme point $t \varepsilon T_{k}$ of the polytepe assoc!ated with the dual of P_{k}

For the one copy case ($n=1$) and for integer demands and capacities, network flow theory shows that, the dual varidiles II are also integers. Hence, from ($6 ?^{\prime}$), the y_{k} are integers. Pinolem B^{\prime}. therefore an allinteger program from which a fassible solution is already divallable (namely, $\left.y_{i j k}=0,(1, j) \in Y, \forall k\right)$ and the Yoing-Genzalez diyorlthm may de applied. For the multi-copy \vdots esp, however, the g vaives are not recessarily integer
and the y_{k} may not be integer. B^{\prime}, in this case, is a mixed-integer linear program.

We conclude with the following remark on proc:ems with a more flexible budget structure.

REMARK. The basic model considered in formulation M may be extended for the case of budget ceiling deferrals. The mechanism thai permits funds which remain unused in a certain period, to be transferred to a later period is given by a proper manipulation of the slack variables of constraints (6.13).

Let $s_{k}, k \cdot 1, n$ be the amount of unused funds of period k. The constraints (6.13i take the new form

$$
\begin{equation*}
\underset{(i, j) \varepsilon \gamma}{\varepsilon} a_{i j k}\left(y_{i j k}-y_{i j k-1}\right)-s_{k-1}+s_{k}=B_{k}, k=1, \ldots, n \tag{6.28}
\end{equation*}
$$

with $s_{0} \equiv 0$, and with s_{n} representing the idle funds, if any, at the end of the assignment. We observe that no present worth factor is attached to the variables s_{k}, so they represent for all cases, simply idle cash.

The solution to M with (6.28) instead of (6.13) is not substantially altered. Its influence will be reflected exclusively in tine solution of the integer program, B^{\prime}, by augmenting the problem with the n slack variables s_{n}. If $a_{i j k}$ and s_{k} are assumed to be integer, then s_{n}, \forall_{n} will aiso be integer.

6.12 NOTES TO CHAPTER VI

[1] Moyer, R. A., "Comprehensive Urban Transportation Study Methods", A.S.C.E., Journal of the Highway Division, December 1965, pp. 57-87.
[2] Martin, B. V., F. W. Memmott, III, and A. J. Bone, Principles and Techniques of Predicteng Future Demand for Urban Area Transportation, The McI.T. Pr ss, June 1961.
[3] Wardrop, J. G. " "Some Theoretical Aspscts of Road Traffic Research". Inst. of Civ. Fng., Road Paper No. 36; Land, 1952.
[4] Beckman, M., C. B. McGuire, and C. Hinster, Stadies in the Economecs of Transportation, New Haven, Connecticut: Yale University Press, 1956.
[5] Charnes, A. and W. W. Ccoper, "Multi-iopy Traffic Network Models", in Proc. Symposium on the Theory of Traffic Flow, R. Herman (ed.), New York: Elsevier, 1961, pp. 85-96.
[6] Bone, A. J., Finll Report of the Highway Transportation Demand Research Project, Research Report R65-24, M.I.T., Department of Civil Engineering, No. 1965.
[7] Martin, B. V., A Computer Program for Traffic Assignment Rescarch, Research Report R64-41, M.I.T., Department of Civil Eng... .ing, December 1964.
[8] Pinnell, C. and G. T. Satterly, Jr., "Anaiytical Methods in Transportation: Systems Analysis for Arterial Street Operation", A.S.C.E., Journal of the Engineering Mechanics Division, December 196:, pp. 63-95.
[9] Hershdorfer, A. M., Optimal Routine of Urban Trafoic, Ph.D. Thes is, Massachusetts Institute of Technology, June 1965.
[10] Jorgensen, N. O., Some Aspects of the Unban Traboic Assegnment Problem, Graduate Report, Institute of Transportation and Traffic Engineering, University of ralifornia, Juite 1963.
[11] Haikalis, G. and H. Joseph, "Economic Evaluation of Traffic Networks", H. R. B. Bucieten 306, 1961, pp. 39-63.
[12] Garrison, W. L. and D. F. Marble, "Analysis of Highway Networks: A Linear Programming Formulation", H. R. B. Proceedings, Vol. 37, 1958, pp. 1-17.
[13] Quandt, R. E., "Models of Transportation and Optimal Network Construction", journal of Regional Science, Vol. 2, 1960, pp. 27-45.
[14] Roberts, P. O., and M. L. Funk, Towand Optimum Methods of Link Addition in Transportation Networks, Massachusetts Institute of Technology, Department of Civil Engineering, September 1964.
[15] Ridley, T. M., An Investment Polisy to Reduce the Travel Time in a Transportation Network, Operations Research Center, ORC 65-34, University of California, Berkeley, December 1965.
[16] Kalaba, R. E., and M. L. Juncosa, "Optimal Design and Utilization of Communication Networks", Managemert Science, Vol. 3, 1956, pp. 33-44.
[17] Roberts, P. O., Transport Planning: Models for Developing Countries, Ph.D. Thesis, Department of Civil Engineering, Northwestern University, 1966.
[18] Ochoa-Rosso, F., and A. Silva, Optimum Project Addition in Urban Transportation Networhs via Descriptive Traffic Assignment Nodels , Research Report R68-41, Massachusetts Institute of Technology, Department of Civil Engineering, June, 1968.

APPENDIX A

THE DECOMPOSITION PRINCIPLE FOR MIXED-VARIABLE PROGRAMS

A. 1 InTROOUCIIION

In this Append: x we sha!i present in detall the partitioning teciinique deveinued by Renders [1] is appiiet to both antinupus and mixedinteger linedr programming problems presenting the ss-called block-angular structure. In the case of continuous linear piograms the method, as noted by Benders and also by Balinsiki [2], constitutes a dual form of the Dantzig and Wolfe decomposition principle [3]. We shall explicitiy show this property

In the linear programming case, the partitioning technique requires the solution of a linear program differing from the one of the previous iteration by one or two constraints. Thus the dual-sumplex meihod is indicated to reoptimize the problem subject to the additional constraint(s).

For the case of the ($0-1$) mixed-integer linear program, the partitioning technique requires the solution of an all-integer ($0-1$) programming problem dugmented at edch iteration by one or two additional constrairits. The roung-Gonzalez digorithm [4], [5] is the method we have selected for the solution of the all-integer program, and a procedure to reoptimize the solution of the previous iteration is indicated

The partitioning technique developed here is directly applied in chapters V and $V I$ to the solution of multi-stage network synthesis problems.

A. 2 PROBLEM FORMULAIION. CER.VAIION OF AN EQUIVALENT PROGRAM

We shall consider the class of mathematical programming problems with the following andytical comulation:

$$
\begin{align*}
& \text { Minimize } \quad 2: \iota_{0}{\underset{x}{0}} \sum_{i=1}^{m} \dot{த}_{1} \underline{x}_{1} \\
& \text { Subject to } A_{0}{\underset{x}{0}}^{b_{0}} \tag{A.1}
\end{align*}
$$

$$
\begin{align*}
& A_{1}{\underset{\sim}{x}}_{0}, B_{1} \underline{x}_{1}-\underline{D}_{1}, 1-1, \quad, m \tag{A.3}\\
& \underline{x}_{1} \geq 0 \tag{A.4}\\
& {\underset{\sim}{x}}_{0}=S_{0} \tag{A.5}
\end{align*}
$$

where A_{0} is an ($m_{0} \times n_{0}$) matrix, A_{1} is an ($m \times n_{1}$) matrix, B_{i} an ($m_{j} \times n_{j}$) matrix, x_{1} and \underline{c}_{j} are vectors with n_{i} components and \underline{b}_{i} are vectors with m, components. The n_{0} component vector ${\underset{\sim}{x}}_{0}$ is defined uver the region S_{0} We shall define S_{0} as the intersection of (A.2) and (A.5) for the following special cases of \bar{S}_{0} :
i) s_{0} the non-nogative orthant Therefore

$$
\begin{equation*}
S_{0}=\left\{\underline{x}_{0} / A_{0} \underline{x}_{0}=\underline{b}_{0} ; \underline{x}_{0} \geq 0\right\} \tag{A.6}
\end{equation*}
$$

(i) ξ_{0} the discrete set defined by the vertices of the unit hypercube. Therefore

$$
S_{0}+\left\{x_{0}, A_{0} x_{0}-\underline{D}_{0}, x_{0 j}-0 \text { or } 1, j=1, \ldots, n_{0}\right\}(A .7)
$$

For case $: i$, problem A becomes a linear program in itandard form that may be solved by spplying the decomposition principle of Dantzig and Wolfe to its dual program for iase 11), the resulting progran is a $(0-1)$ mixed integer progrdming probien. It edch $A_{1}=0,1=0,1, \ldots$, m the problem reduces to a set or mituaity aderintint problems of the form Min $z_{1}=\underline{c}_{1}{\underset{-1}{1},}^{\theta}, \underline{x}_{1}=\underline{\theta}_{1}, x_{-1}=0 \quad$ In any case, the constraints of probiem A present the rollowing associded structure of block-angular form:

We shali nuw deveinf a prigr am equivalent to problem A. Denoting by $\underline{x}=\left[\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{m}\right]$ a solution vector to A, the problem may be expressed in the equivalent form

The minimization problem within curly brackets, for a given value of $\underset{\sim}{x} \in S_{C}$, becores a standard linear programi in \underline{x}, which we denote as P. Note that solving P is equivalent to solving the following set of m mutually independent linear programs and surming up their objective fuliction values:

$$
\begin{aligned}
& P_{1} \text { : Mirimize } Z_{1} \cdot \underline{c}_{1} \underline{x}_{1} \\
& \text { Subject to } B_{1}, \underline{x}_{1} \underline{b}_{1}-A_{1} \underline{x}_{0} ; 1,1, \ldots m \\
& \underline{x}_{1}=0
\end{aligned}
$$

Problem P nas an assiidatea dud program D that. may be decomposed ilito the following set of subpicurano corresponding to the dudl programs of P_{i} :

```
\(D_{1}: \operatorname{Max} \operatorname{miz} \quad i_{1} \quad\left(\underline{b}_{1}-A_{1} x_{0}\right)^{\prime} \underline{\mu}_{1}\)
    Subje:t to \(B_{1}, \underline{u}_{1} \leq \tilde{s}_{1}^{\prime}\)
        \(\underline{u}_{1}\) uncestricted
```

where the symbo: (") inalcates transpose By the duality theorem of
linear proyramming, if tedsio': solutions exist for both P_{f} and D_{1} : then their optimal solutions z_{1}^{2} and \bar{z}_{j}^{0} satisfy $2_{1}^{0}-\bar{i}_{1}^{0}$

Hence, expression (A 9) may be expressed in terms of the dusi problems D, as follows:

Consider the convex polytope (a finite number of closed halispaces) $S_{i}=\left\{\underline{u}_{i} / B_{i}^{\prime} \underline{u}_{1} \leq{\underset{i}{i}}_{\dot{j}}\right\} \quad$ Observe that S_{i} is independent of the values of \underline{x}_{0}. We shall assurie temporarily that S, is bounded (1 .e., it is a convex polyhedron). Then from ($A, 10$) note that for any velue of $x_{0} \in S_{0}$, the maximati of each subprogram D_{1} will occur at an exteme point of S_{j}, Deriote by $\underline{\underline{u}}_{i k}, K \in K_{i}$ the extreme points of the polyhedron $B_{i}^{\prime} \underline{u}_{i} \leq \underline{C}_{i}^{\prime}$. We shall assume that there are N, such extreme points. Hence it suffices to calculate the values of $\left(\underline{b}_{1}, A_{1}{\underset{0}{x}}_{0}\right)^{\underline{\hat{u}}} \underline{i k}_{k}$ for each extreme point and select

from the above discussion, (A. 10) is equivalent to

 $\hat{u}_{i k}$ the following condition nolds:

$$
\begin{equation*}
\left(\underline{0}_{1}-A_{1} \underline{x}_{0} ; \underline{\underline{u}}_{1 k} \leq y_{1}\right. \tag{A.12}
\end{equation*}
$$

If we proceed analogously for all extreme points of each S_{i}, then (A.11) may be explicitly written in the form:

$$
\begin{align*}
& B: \text { Minimize } z=\underline{c}_{0} \underline{x}_{0}+\sum_{i=1}^{\underline{y}} y_{1} \tag{A.13}\\
& \text { Sudject to }\left(\underline{b}_{1}-A_{1} \underline{x}_{0}\right)^{\prime} \underline{\hat{u}}_{i k} \leq y_{i}, i=1, \ldots, m, k \in K_{1} \tag{A.14}\\
& \underline{x}_{0} \in S_{0} \tag{A.15}\\
& y_{1} \text { unvestricted } \quad, 1=1, \ldots, m \tag{A.16}
\end{align*}
$$

The relationships : A 13) to (A. 16) define a new program in terms of the variables x_{0} and y_{i}, which we shall now show to be equivalent to problem A.

If $\left(\underline{x}_{0}^{0}, \underline{x}_{1}^{0}\right)$ is an optimal solution to A, then \underline{x}_{i}^{0} is an optimal solution to P_{i} for $x_{0}=x_{0}^{0}$ Also, D_{i} will have an optimal solution for a certain extreme point ${\underset{u}{i}}_{i k}^{n}$. Hence, in problem B, expressions (A.14) will be satisfied, and those corresponding to $\hat{u}_{i k}^{2}$ will be satisfied as strict equalities, thus $y_{i}^{0}=\left(\underline{b}_{i}-A_{j} \underline{x}_{0}^{0}\right)^{\prime} \hat{\underline{u}}_{i k}^{0}=\underline{c}_{i} \underline{x}_{i}^{0}$. This implies that the optimal solution to $B ;\left(x_{0}^{0}, y_{i}^{0}\right)$, gives the same value fcr the objective function as that one obtained by A.

Conversely, assume that $\left(\underline{x}_{0}^{0}, y_{j}^{0}\right)$ is an optimal solution to B. Then for each 1, at least one value of $\hat{u}_{i k}$ will satisfy (A.14) as a strict equality, say $\ddot{u}_{i s}^{0}$ corresponding to the extreme point optimal solution of D_{i}. Then by solving the problems P_{i} for $\underline{x}_{0}=x_{0}^{0}$, we will obtain \underline{x}_{i}^{0} with $\sum_{i=1}^{m} \underline{c}_{1} \underline{x}_{0}^{0}=\sum_{i}^{m} y_{1}^{0}$ since ine optimal solution to A for a value ${\underset{x}{x}}_{0}^{=1}=x_{0}^{0}$ corresponds to the solution of p_{1}, it follows that $\left(\underline{x}_{0}^{0}, \underline{x}_{i}^{0}\right)$ is the optimal solution to A with :he same value of the objective function as the one votained for B

For a formal proof considering the unbounded as weil as the infeasible case the reader is referred to the work of Benders [1].

We shall focus cur attention upon the solution of problem B for the two special sets j_{0} defined at the beginning of the section.

A. 3 The case mhere S_{0} is the non-negat.ve orthant

We conside prosem 8 with S_{0} given by the expresition (A.6)
Problem B, whith we shall $: a^{\prime \prime}$ the master pararam, besome:

SuDect to $\left(A_{i} \underline{\underline{i}}_{1 k}\right)^{\prime} \underline{x}_{0}+y_{y} \geq \underline{b}_{1}^{\prime} \underline{\underline{g}}_{1 k}, k=: \ldots, N, N$
$A_{0} \rightarrow \underbrace{}_{0}$
$x_{0}=0, y_{1}$ unrestricted
This: in passing from the inear program A in standard firm to the equivalent l.nix: avgram B, by partitioning the set of vartables into ${\underset{x}{0}}_{0}$ and the remaining ${\underset{\sim}{x}}$ we have reduced the number of : $1 \cdot \operatorname{lob}$ les from $\sum_{i=0}^{n_{i}}$ to ($n_{0}+m$). At the same time, we have increased the number of constraints irom $\sum_{1-0}^{m} m_{1}$ to $1 m_{0} \cdot \sum_{1+1}^{m} N_{1}$)

Direct solut:on or postem 8 hardly poduces a positive net result, since suin an app:oa:h :mplies the ealiu'dtion in adrance of all constraints of cype A : 8 ; , e the zilcu'ztion of al' the extreme points of the convex paryned., ξ_{1} Morejver, it an oprimum solution to B is obtatned, say $\left.\hat{a}_{0}^{0}, y_{1}^{J}\right)$, then the , sution to eath of the m linea programs P_{1} for ${\underset{\sim}{x}}_{0}{ }_{0}^{0} 0_{0}^{0}$'s equ-red in $J \cdot$ jer to find the zumesponding optimal vectors $\left.\underline{x}_{1}^{0}, \therefore 1, m\right)$

Howeve. ... The opund , כ'ution to B only a subset of (A 18) will
 A.5) makes use of :his ti" in datempeing to generate those constraints (A.18) that dete.mine optint ty io B the proceduce so'ves 8 with a small subjet of constrints A 18); 'r opt my 'ty is not ootained, the subprigrams D_{1} ie sulved to generate additionjl constraints to the master prigiom i, whi: in turnwil: have to be resptimized inis altemative proces: is epeated unt: an opt mal solution (if one exists) is obtaned in a cunite number of steps, juranteed dy the act that the number ot ionst., it, (A i8) is linite

The solation procedure just sut!ined c'ose?y parallels the decompos.ction aflgu, thm of Cantz!g and Wolfe. We shall now interpret it in deta:l

By obtalning the dual of orjoiem B we have

$$
\begin{align*}
& C \text { : Max'mize } i=\prod_{i-1}^{\sum_{k=1}} \sum_{i k} f_{1 k} \lambda_{1 k} \tag{A.19}\\
& \text { Suoje: to } \sum_{i=1}^{m} \sum_{k-i}^{N_{1}} \underline{d}_{1 k} i_{i k}-A_{0} w_{-2} \leqslant E_{0} \tag{A.20}\\
& \sum_{k=1}^{N} \lambda_{i k}=1
\end{align*}
$$

$\lambda_{1 k} \geq 0$
${ }^{W}$ o unrestricted
where $f_{i k}=\underline{b}_{i}^{\prime} \underline{\hat{u}}_{1 k}$ and $\underline{1}_{i k}=\left(A_{i}^{\prime} \underline{u}_{i k}\right)$.
We ubserve that problem c corresponds to the so-called master or extremal problem j^{f} the dual of A, in the context of the Dantzig and Wolfe decomposition principle. This justifies the name that we have assigned to B in descriting Gencers' decmposition principle. In C, the variables $\lambda_{i k},\left(1=1, \quad, m ; k=1, \quad N_{1}\right)$ dre weights ijming a convex combination of the extreme points $\underline{\dot{u}}_{1 k}$ of the polyhedron S,

In the optimal solution to prodem C, only a small subset of the variables $\lambda_{i k}$ will be basic The Dantzig and wolfe method for solution of the dual progiam of A makes use of this ract; it tries to find the subset of λ_{1} that determines optimality for C without examiling ali basic feasible solutions. This method first obtains a basic feasib e solution for C; if the solution is nct optims!, the subpragrams D_{1} are solved to generate a new column (1 e, ptop: it ve:tut) that should go into the basis of the master program C ihis process is repested until an eptimal solution (1 t one exists) is obiained in a tinite number of steps, guaranteed by the fact trat the number of extreme oints of the subprograms D_{i} is finite

Finally we observe that for optimal solutions to B and C, (assuming non-degeneracy), to each bas $1:$ variable $\lambda_{i k}^{0}$ of C there corresponds an active constraint of ($\mathrm{A}, 18$). This toi?ows from the complementary slackness conditions:

$$
\lambda_{1 k}^{0}>0 \Rightarrow\left(A_{i} \underline{\underline{u}}_{i k}\right) \underline{x}_{c}^{0}+y_{i}^{0}=\underline{b}_{1} \hat{\underline{u}}_{i k} .
$$

A. 4 extension to the case khere the S, are not all bounded

If S_{1} is an unbounded polytope, from convex set. theory we know that it possesses a rinite number of excreme points $\hat{\underline{\hat{u}}}_{i k}, k \varepsilon K_{\mathfrak{i}}$ and a finite number of extreme rays $\underline{\underline{w}}_{\boldsymbol{\ell}}, \ell \in L_{i}$, emanating from certain extreme points.

Hence it may occur that for a certain value of $\underline{x}_{0} \in S_{0}$ in (A.11), the solution to one of the dual prograis D_{i} tends to infinity (1.e., problem D_{j} is unbounded) alorig the half line

$$
\left\{\underline{u}_{1} / \underline{u}_{i}=\hat{\underline{u}}_{1 k}+\delta \underline{\underline{u}}_{1 \ell}, k \in K_{i}, \ell \in L_{i}, \delta \geq 0\right\} .
$$

The corresponding value of the objective function may be expressed as

$$
z_{i}=\left(\underline{b}_{1}-A_{1} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{i k}+\varepsilon\left(\underline{b}_{i}-A_{1} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{i l}
$$

If $z_{f} \rightarrow \infty$, wid since $\delta \geq 0$ fom the previous expression, it follows that

$$
\begin{equation*}
\left(\underline{b}_{1}-A_{1} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{1 l}>0 \tag{A.22}
\end{equation*}
$$

If D_{1} is unbulinded, problem P_{1} and thus problem A are infeastole for values of $\underline{x}_{0} \in S_{0}$ for which ($A .22$) holds. Hence, to prevent \underline{x}_{0} from taking on such values, it suffices to restrict ($A .11$) or its equivalent probleas B with the following constraints associated with all extreme rays of S_{1} :

$$
\begin{equation*}
\left(\underline{b}_{1}-A_{1} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{1} \leq 0 ; \ell \varepsilon L_{1}, \forall_{1} \tag{A,23}
\end{equation*}
$$

The extreme rays of S_{j} may be obtained by firiding the extreme rays of 'ts associated pceyhedral conces cone $\left\{\underline{u}_{i}, B_{i}^{\prime} \underline{u}_{1} \leq 0\right\}$, In this mainer the set L_{i} is detemined and the set of constra!nts (A.23) may be constructed.

If constraints ($A, 23$) thus constructed are added to problem B, then any feasible solution $\left(\underline{x}_{0}, y_{1}\right)$ to B, with ${\underset{x}{x}}^{0}$ then used in sclving the problems P_{i}, will result in a feasible solution $\left({\underset{\sim}{x}}_{C},{\underset{i}{x}}\right.$) to the originai problem A.

Finally consider the linear programming case of section A. 3 with constraints ($A, 23$) included. Note that the resulting dual program C is analogous to the one obtained by zpplying the Dantzig and Wolfe method to the dual of a problem A containing unbourided subprograms.

A. 5 THE PARTITIONING ALGORITHM OF BENDERS

The Renders' partitioning algorithm, instead of solving directly problem B, solves iteratively a less restricted problem B^{\prime} with the same objective as B. At each new $i+$.eration, additionai constraints are added to B^{\prime} and the problem is reoptimized. Since eventually B^{\prime} would be identical to R, the optimal solutici to the latter must finally be found. However: the method tries to reach optimality for B by solving problems B^{\prime} with only a small subset of the total number of constraints.

Let I be the set of indices $i=1, \ldots, m$, and I^{\prime} a subset of I. Also let K_{i}^{\prime} be a subset of the set of extreme points K_{i} to subprogram i, and $L_{i} \subseteq L_{i}$. Then problem B^{\prime} may be formuiated as follows:

$$
\begin{align*}
& E^{\prime} \text { : Determine }{\underset{x}{0}}_{0}^{0} \dot{y}_{1}^{0} \text { and } z^{0} \text { so as to } \\
& \text { Minimize } \quad z={\underset{-}{c}}_{0}^{{\underset{x}{x}}^{0}}+\sum_{i=1}^{m} \tilde{y}_{i} \\
& \text { Sutject to }\left(\underline{D}_{1}-A_{i} \dot{\underline{a}}_{0}\right)^{\prime} \underline{u}_{1 k} \leq \dot{j}_{1} ; 1 \varepsilon I^{\prime}, k \in K_{1}^{\prime} \tag{A.24}\\
& \left({\underset{\sim}{1}}^{-1}-A_{1} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{1} \leq 0 ; i \in I^{\prime},\left\langle\varepsilon L_{i}^{\prime}\right. \tag{A.25}\\
& {\underset{\sim}{x}}_{0} \in S_{0}: \bar{y}_{1} \text { unrestricted; } 1=1, \ldots, m
\end{align*}
$$

A- 10

Assuming that an optimal solution with value 2° exists for B, and that 2^{0} is an optimal solution to B^{\prime}, it follows that $Z^{\circ} \leq Z^{0}$, since B^{\prime} is less restricted than problem B. That is, the solution to B^{\prime} is a lower bound on the optimal solucion to B.

The solution prosess consists of solving B^{\prime} and attaining ($\tilde{\tilde{x}}_{0}^{0}, \tilde{y}_{i}^{0}$)
 infeasible). The tral sorution ${\underset{\underline{x}}{2}}_{0}$ is then replaced in E and the problem is solved for the alues of y_{i}. Solving $B+J^{\prime}$ a given ${\underset{\sim}{x}}_{C}={\hat{\underset{x}{x}}}_{0}^{0}$ is equivalent to solving the subprograms D_{1} to: that value of \underline{x}_{0} and c teining a set of extreme ponts $\dot{u}_{\text {in }}$ and a set of walues y_{1}^{0} Thus problem B for $\underline{x}_{0}=\tilde{x}_{0}^{0}$ has the solution $\left({\underset{-x}{0}}_{0}^{0}, y_{1}^{0}\right)$, and $z=\underline{c}_{0} \tilde{x}_{0}^{0}+\sum_{i=1}^{0} y_{1}^{0}$. Now z and z^{0} are compared. If $z^{0}<z$, then the current constraints of B^{\prime} do not determine optimality; liew constraints generated from the extreme points $\hat{\underline{u}}_{i k}$ obtained from the solution to D_{i} are therefore added to B^{\prime} to complete one iteration of the algcrithm. On the other hand, if $z^{0} \geq 2$ the solution z^{0} tu B^{\prime} is optimal for B, and thus it satisfies the original problem A.

Next we shall restate the algorithm, considering all of the different situations. For a rigorous proof of the termination rules, the reader is referred to the work of Benders, [1].

INITIAL STEP. Uotain a subset of extreme points K_{i}^{\prime} and/or extreme rays L_{i}^{\prime} to generate prublem B^{\prime}.
STEP a. Solve problem B^{\prime}
a.l) If B^{\prime} is irifeasible, B is infeasible; stop, problem A has no feasible :olution
a.2) If B^{\prime} is unbounded below, take as the value of \underline{x}_{0} for step b any feasible $\underline{\underline{X}}$ of B^{\prime} corresponding to a small value of \bar{Z}.
a.3) Otheiw se B^{\prime} has an optimal solution z^{0} and $\left(\tilde{x}_{0}^{0}, \tilde{y}_{\mathfrak{f}}^{0}\right)$, so go to step D

STEP b. Solve protem B for ${\underset{\sim}{x}}_{0}={\underset{x}{x}}_{0}^{0}$ from step a. That is, solve all subprograms D_{1} for that value of \underline{x}_{0}.

NOT RKPRODUCIBLE
 A-11

b. 1) If one of the subprograms D_{1} is infeasible, stop. Problem A is either infecsible or unjounded below. (This case may occur only during the first iteration.)
b.2) For each subprogram $D_{\text {, }}$ that is unbounded above along the half line $\left\{\underline{u}_{1}, \underline{u}_{1}-\underline{u}_{1 k}+\delta \underline{u}_{1 \ell}\right\}$, add for $\underline{\bar{u}}_{i \ell}$ a constraint of the form (A 25) to problem B^{\prime}. if also $\left(\underline{b}_{i}-A_{i} \underline{\underline{x}}_{0}^{0}\right)^{\prime} \underline{\underline{u}}_{i k}>\tilde{y}_{i}^{0}$, then $\hat{u}_{1 k}$ deitnes a constraint or the form ($A: 24$) to be added to B^{\prime}. Go to step a
2.3) Otherwise all D_{1} have an optimal solution $\underline{u}_{i k}^{0}$. Calculate $y_{i}^{0}-10,-A_{i} \dot{x}_{i}^{\prime} \hat{u}_{i n}^{0}$ and $\underline{y}^{n}+1$ stop:
STEP c ODtain $2:{\underset{-}{0}}^{\ddot{x}_{0}^{0}}+\sum_{1=1}^{m} y_{1}^{0}$
c. 1) If $z^{0}=z$, stop; the solution z and $\left(\underline{x}_{0}^{0}, y_{i}^{0}\right)$ is optimal for B. By obtaining the solutions th the problems P_{i} we obtain \underline{x}_{i}^{c}, and thus z and $\left(\dot{x}_{0}^{0}, \underline{x}_{j}^{0}\right)$ constitute an optimal solution for A.
c.2) If $z^{0}<z$ then each of the $\underline{u}_{i k}^{0}$ defines a new constraint of the form ($A .24$) to be added to B^{\prime}. Go to step 2 .

We note the following properties of the algorith:

1) Each time that stap a is executed (i.e. : problem E^{\prime} solved), z^{0} constitutes a lower tourd on the optimal solution z^{0} which is also a better lower bound than that of the previous iteration.
2) Whenever step b is executed (t.e., problem E is solved for $\underline{x}^{0}=\underline{x}_{0}^{0}$), either we obtain the uptumal solution to B, (detectea by C.l) or the solution to B constitutes an upper bound on z^{0}, (i.e., $\left.z^{0} \leq \underline{c}_{0} z_{0}^{0}+\sum_{1=1}^{0} y_{i}^{0}\right)$. The best upper bound, however, does not necessarily correspond io the value of the oojective function of B obtained in the current iteration, but is obtained as the minimum vaiue of the objective function of B over all iterations performed so far
A. 6 THE CASE WHERE ξ_{0} is THE SET OF VERTICES OF THE UNIT HYPERCUBE

In this section we consider problem B in a slightly different form, in order to conveniently study the case where S_{0} is given by expresston (A.7)

In expression ($A, 11$), set $y_{0}=\underline{c}_{0}{\underset{\sim}{x}}_{0}+\max _{k \in K_{i}}\left\{\sum_{i=1}^{m}\left(\underline{t}_{i}-A_{i} \underline{x}_{0}\right): \hat{u}_{i k}\right\}$; then for any combinaticn of il extreme points taken one from each convex set S_{p}, the following condition holds:

$$
\underline{c}_{0} \underline{x}_{0}+\sum_{i=1}^{m}\left(\underline{g}_{i}-A_{i} \underline{x}_{0}\right)^{\prime} \hat{\underline{u}}_{i k} \leq y_{0} ; k \varepsilon k_{i}
$$

Expression (A, II) may therefore be conveniently expressed in the form of the equivalent problem to A :

$$
\begin{align*}
& B: \text { Minimize } z=y_{0} \tag{A.26}\\
& \text { Subject to } \underline{c}_{0} \underline{x}_{0}+\sum_{i=1}^{m}\left(\underline{b}_{i}-A_{i} \underline{x}_{0}\right)^{\prime} \underline{\hat{u}}_{i k} \leq y_{0}, \\
&, i=1, \ldots, m ; k \in k_{i} \tag{A.27}\\
&\left(\underline{b}_{i}-A_{i} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{i \ell} \leq 0, i=1, \ldots, m ; \ell \in L_{i} \tag{A.28}\\
& A_{0} \underline{x}_{0}-\underline{b}_{0} \tag{A.29}\\
& \tag{A.30}\\
& x_{0 j}=0 \text { or } 1 \tag{A.31}\\
& y_{0} \text { unrestricted }
\end{align*}
$$

The ($0-1$) mixed-integer innear piogramming problem A is thus equivalent to B. Except for the unrestricted variable y_{0}, problem B is a ($0-1$) all-integer progranming probiem with n_{0} integer variables and a potentially large number of constraints. For certain network flow problems involving decision variables and satisfying soms additional integrality conditions on the input data, the variable y_{0} may also be restricted to be integar (cf. Chapter V). It is for this class of problems that we shall discuss the solution procedure of step a of ihe Benders algorithre.

The problem B^{\prime}. (B with a subset of ($A .27$) and ($A .28$), w111 then contain $n_{0}+1$ integer variables and may be solved by means of a branch and bound algorithm (cf. Chapter II). However, we consider that the primel all-integer algorithm, develojed independently by Young [4] and Gonzalez [5] and denoted here as the young-Gonzalez algoritim, is more suited to
the conditions of the problem. Indeed, the following properties indicated by Gonzilez [5] fully apply to the solution of B^{\prime} :

1) Gonzalez presents a special procedure for treating unsigned variables, whict. app!les in our case to the integer and unrestricted variable y_{0} in 8 '
2) He also presents a special way to handle integer variables restricted to take on the wiues 0 or 1

1il) Given the naiure or the objective function, (iec, y_{0} is the only variable and has a positive coefficient), the initial tableau already sat'sí:cs jut na 'ty : : :rsi ruw elénents ≤ 0 althougn it má' nut be primal teasiole. Therefore it suffices to apply the González procedure to obtain a starting feasible solution.

Finally, we have observed that each time a new constraint is added to a problem after step b. of the Benders algorithm, problem B^{\prime} may te reoptimized simply by updatins the sonstraint in terms of the current tableau. Since the slack of the innstraint will be negative, and it is restricted to be positive, we apply the Gonzalez method to remove the infeasibility of the slack variable. This operation may alter the optimality of the first row. If this is the case, the tableau is then reoptimized from the properties we have indicutied, we consider that the application of the algorithm in Chapter V for the solution of the multistage link addition problem is justitied.
A. 7 SOLUTION OF AN EXAMPLE PROBLEM

Consider the following proo.en:

$$
\begin{aligned}
A: M \operatorname{In}=7 x_{1} \cdot 6 x_{2} \cdot 5 x_{3} \cdot 4 x_{4} \cdot 3 x_{5}-12 x_{6} & \\
4 x_{1} \cdot 2 x_{2}+5 x_{3} & \geq 1 \\
4 x_{1} \cdot 3 x_{2} \cdot x_{3} & \geq 8, \forall x_{1} \geq 0 \\
5 x_{1}+x_{4} \cdot 3 x_{6} & \geq 5 \\
2 x_{1} & =4 x_{E}
\end{aligned}
$$

A. 14 DECOMPOSITION OF MI XED-VARI ABLE PROGRAMS

Although the problem is not in standard form, we sna!! not add slack variables, but wi' use the graphical representation of the sets S_{i}. Conside two subprograms' S_{1} and S_{2}, indicated in Figs. $A-1$ and $A-2$ respective'y. Fhen the various e!ements of problem A are

$$
\begin{gathered}
A_{1}=\left[\begin{array}{l}
x_{2} \\
4 \\
4
\end{array}\right], x_{3}=\left[\begin{array}{l}
5 \\
2
\end{array}\right], B_{1}=\left[\begin{array}{ll}
2 & 5 \\
3 & \vdots
\end{array}\right], B_{2}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 4
\end{array}\right], \underline{b}_{1}=\left[\begin{array}{l}
1 \\
8
\end{array}\right], \underline{b}_{2}=\left[\begin{array}{l}
5 \\
6
\end{array}\right] \\
S_{0}: S_{0}=x_{1}, x_{1} \leq 0 \\
\\
S_{1}=\left\{\left(u_{1}, u_{2}\right) / 2 u_{1}+3 u_{2} \leq 6: 5 u_{1}+u_{2} \leq 5 ; u_{1}, u_{2} \geq 0\right\} \\
S_{2}=\left\{\left(u_{3}: u_{4}\right), u_{3}: 4, u_{4} \leq 3,-3 u_{3}-4 u_{4} \leq-12 ; u_{3}, u_{4} \geq 0\right\}
\end{gathered}
$$

INITIAL STEP We shall assume that an extreme point for each S_{1} is known, say $\underline{\hat{u}}_{11}=(0,0)$ and $\underline{\underline{u}}_{21}=(0,3)$.

ITERATION 1
STEP a. We solve B'. To reduce the number or variables in 9^{\prime} to 2 ,
(1.e., \tilde{x}_{1} and \tilde{y}), thus pemiltt.g a graphical solution of this step, we shall set $y=\underline{c}_{0}{\underset{x}{0}}^{+}+\sum_{i=1}^{2} \max _{k \in K_{i}}\left(\underline{b}-A_{i} \underline{x}_{0}\right)^{\prime} \underline{\underline{u}}_{1 k}$.
$8^{\prime}: \operatorname{Min} z=\bar{y}$
$\bar{y}-\tilde{x}_{1}: 18$
$\chi_{1}=0$ junrescricted
By inspection liee $F \cdot \underline{y} A-3$; the optimal solution is $z^{0}=18$, and $\tilde{x}_{1}^{0}=0$. STEa o. We solve the subproy ams O_{1} and O_{2} for $x_{1}=x_{1}^{0}=0$.

$$
\begin{array}{rlr}
D_{1}: \operatorname{Max} z_{1}=u_{1}+8 u_{2} & D_{2}: \operatorname{Max} z_{2}=5 u_{3}+6 u_{4} \\
2 u_{1}+3 u_{2} \leq 6 & u_{3} & \leq 4: \\
5 u_{1}+u_{2} \leq 5 & u_{4} \leq 3 \\
u_{1}, u_{2} \geq 0 & -3 u_{3}-4 u_{4} \leq-12 \\
& u_{3}, u_{4} \geq 0
\end{array}
$$

D_{1} : optimal station $z_{i}^{0} \quad 16, \theta_{-12}=(0,2)$
O_{2} : optimal solution $z_{2}^{0}=38,{\underline{\theta_{22}}}^{2}=(4,3)$
STEP c. We obtain z for the current value of $x_{1}: z=7 . x_{1}^{0}+z_{1}^{0}+z_{2}^{0}=54$; therefore $z=18<z=54$, and the optimal solution z^{0} is bounded as follows: $\quad 18 \leq z^{0} \leq 54$

ITERATION 2

STEP a. $B^{\prime}: \operatorname{Min} z=\tilde{y}$

$$
\begin{aligned}
& \tilde{y}-\tilde{x}_{1} \geq 10 \\
& \tilde{y}+23 x_{1} \geq 54 \text { (new constraint) } \\
& \tilde{x}_{1} \geq 0, \tilde{y} \text { unrestricted }
\end{aligned}
$$

Optimal solution, (see Fig. A-4): $z^{0}=19.5$, and $\bar{x}_{1}^{0}-1.5$
STEP b. We solve D_{1} and D_{2} for $x_{1}=x_{1}^{0}=1.5$

$$
\begin{array}{rr}
0_{1}: \operatorname{Max} z_{1}=-5 u_{1}+2 u_{2} & D_{2}: \operatorname{Max} z_{2}=-2.5 u_{3}+3 u_{4} \\
\left(u_{1}, u_{2}\right) \in s_{1} & \left(u_{1}, u_{2}\right) \in s_{2}
\end{array}
$$

D_{1} : optimal soluition $2_{i}^{0}=4, \hat{u}_{12}=(0,2)$
D_{2} : optimal so.uction $2_{2}^{0}-9, \underline{u}_{21} \cdot(0.3)$

STEP c. $z-7 X_{1}^{0} \cdot z_{1}^{0} \cdot z_{2}^{0}=23.5$; therefore $z^{0}=19.5<z=23.5$ and the updated bounds for $2^{\text {J }}$ are $19.5 \leq 2^{\circ} \leq 23.5$.

ITERATION 3

STEP a. $B^{\prime}: M \ln z=\hat{y}$

$$
\begin{aligned}
& y \cdot \tilde{x} \geq 10 \\
& \tilde{y}+23 \tilde{x}_{1} \geq 54 \\
& , 7 \tilde{x}_{1} \geq 34 \text { (new constraint) } \\
& \because<, \tilde{y} \text { unrestricted }
\end{aligned}
$$

Optimal soiution, (see fig. $A-5): z^{0}=20$ and $\bar{z}_{1}^{0}=2$
STEP b. We solve D_{1} and D_{2} for $x_{1}=x_{1}^{0}=2$

$$
\begin{array}{rlrl}
D_{1}: \operatorname{Max} z_{1}=-7 u_{1} & o_{2}: \operatorname{Max} z_{2}=-5 u_{3}+2 u_{4} \\
& \left(u_{1}, u_{2}\right) \in S_{1} & & \left(u_{1}, u_{2}\right) \in S_{2}
\end{array}
$$

D_{1} : Optimal solution $L_{1}^{0}=0$, and e:ther $\underline{\hat{v}}_{11}=(0,0)$ or $\underline{\hat{u}}_{12}=(0,2)$
D_{2} : Optimal solution $z_{2}^{0} \cdot 6, \underline{U}_{21}=(0,3)$
STEP $c: z-7 x_{1}^{0}+z_{1}^{0} \cdot z_{2}^{0} \cdot 20$ and $z^{0}=z$, optimality
thus the opcimal solution is: $z^{0}=20, x_{1}^{0}=2, u_{1}^{0}=0, u_{2}^{0}=0$ or 2 $u_{3}^{0}=0, u_{4}^{0}=3$.

To obiain the optimal vilues of the primal varicoles x_{2}, x_{3}, x_{4}, x_{5} and x_{6}, it sufficer to solve the innear orograms P_{1} and P_{2} for $x_{1}+x_{1}^{0}=z$
$P_{1}: \operatorname{Min} z_{1}=6 x_{2}+5 x_{3}$
$P_{2}: \operatorname{Min} z_{2}=4 x_{4}+3 x_{5}-12 x_{5}$

$$
\begin{aligned}
& 2 x_{2}+5 x_{3} \geq-7 \\
& 3 x_{2}+x_{3} \geq 0
\end{aligned}
$$

$$
x_{4} \quad-3 x_{6} \geq-5
$$

$$
x_{5}-4 x_{6} \geq 2
$$

F_{1} : Optimal solution, $i_{1}^{0}=0, x_{2}^{0}=x_{3}^{0}=0$
P_{2} : Opt!mal solution, $z^{6}=6, x_{4}^{0}=0, x_{5}^{0}=\frac{26}{3}, x_{6}^{0}=5 / 3$
Normally this step of solving P_{1} and P_{2} is avoided since fur most algorithms, the solution to problems D_{1} and D_{2} aiso determine the optimal solution to their dual programs P_{1} and P_{2}.

FIG. A-3

FIG A-4

F1G. A-5

A. 8 NDTES TO APPENDIX A

[1] Benders, J. F., "Partitioning Procedures for Solwing Mixed-Variables Progranming Problems", Numerische Nathonatik, Vic1. 4, 1962, pp. 238-252.
[2] Balinski, M. L., "Integer Programming: Methods, L'ses, Computations", Management Science, Vo1. 12, No. 3, November 1965, pp. 253-313.
[3] Dantzig, G. B. and P. Wolfe, "A. Decomposition Principle for Linear Programs", Operations Research, Vol. 8, No. 1, 1960, pp. 101-111.
[4] Ycimg, R., "A Primal (all-integer) Integer Programming Alg̣orithm", Journal of Research of the Natior al Bureau of Standards - B. Mathematics and Mathematicai Physics, Vol. 698, No. 3, July'September, 1965, pp. 213-250.
[5] González-Zubieta, R. H., in Some Aspects of Integer Linear Progruming, Tec!nical Report No. 16, Operations Research Center, Massachusetts Institute of Technology, June 1965.

APPENDIX B

hISTORICAL SURVEY OF OPTIMIZATION THEORY

B. 1 EARLY DEVELOPMENTSS

It is now geherally accepted that the first investigations of optimization were carried out by the Greek geomeiricians of the first Altexandriar School (circ 300-30 B.C.). The well-known historian of mathematical thought, Moritz Cantor [1], attributes to Euclid (Book VI, prop. 27) the first ex:- 'e of an extremal problem in the history of Mathematics. Tho proposition proves by synthetic means that if a straight line segment is divided into iwo parts the product of both parts is maximum whe: the paris are equal No less familiar to Euclid were the foilowing prohiems: "1he perpendicular is the minimum among all straight lines that may be drawn from a point to a line " and "The diameter or a circle is the maximum among all inscribed lines."

The othe two geometers who share with Euclid the fame accrediteu to the Greeks of that school are Archimedes and Apollonius of Perga, who also were corcerned with problems of maxima and minima. The 'former, in tne second book of r.is work on the Sphere and Cykinder, proposes the following: "of all spherical segments whose surfares are equal the hemisphere has the greatest volume". The latter, celebrated for his work on the conic sections, detemines in his fifth book "the shortest line that may be drawn from a porrit to a given conic section".

Pappus of Alexandria, who belongs to the second Texandrian school (30 B.C. - 641 A.D) is credited with the solution of several "isopherimetric problems", The first ten propositions of his fifth book, [3], are directed towards the proof of the proposition that among all figures of sare perimeter, the circle has the greatest area. He later remarks that if most of the properties of the sphere had already been found, one

B-?

remained to be proven: "of all the solid figures having the same area the sphere has the greatest volume". His proof is not generai and the problem became one of the most controversial issues of matheliatical history. Its rigorous solution was not obtained until the second half of the eighteenth century by means of the calculus of variations.

In his book VII, Proposition 61, Pappus solves, by synthetic geometry, the following problem: "Minimize the function $\frac{x(a-x)}{(x-a)-\left(a_{2}-x\right)}$ "; his solution is much simpler and nore elegant than its analytic Counterpart using the differential calculus

In the seventeenth century, after a deep lapse of mathematical progress characteristic of the Middle Ages, and before Newton and Leibnitz developed the calculus, fermat published his Methodir ad disquirendum maximum et munumum. Ball [2] suggests that his method was developed after a remark by Kepler, that the values of a function in the neighborhood of an extreme point on either side must be equil. He solves the probinm treateu by Euclid of finding two numbers such that its sum is given and its product is to be minimized. His method is equivalent to taking a neighboring value of x, namely $x+e$, where e is vary small, and setting $x(a-x)=(x+e)(a-x-e)$. Simplifying the algebra arid ultimately setting $e=0$, the solution is obtained for $x=\frac{a}{2}$. Later Hiygens, from the Hague, stated in general terms the ruie used by Fermat. Atrut 1573 he solved the problem: two points P_{1}, P_{2} nct on the s traigit lint $A B$ are given. Find a point P on $A B$ sucn that $\$ P_{1}^{2}+P P_{2}^{2}$ is a ininimum.

B. 2 CLASSICAL PERIOD

The epoch of formal devoloment of c'acsical opimication theories (indirect methods based on the differential calculus) begins with the invention of the caiculus. The theories obtain necessary conditions to be satisfied by an optim:m point sutficiency was seldom satisfied and new means to prove it remained to be d:scovered. The main contributors were Newton, who applied his methed of fedieo,s to proulenis of maxima and minima, and Lerbnitz, who publisned in his Acta Eruducuam of Octot:-1084 a general methot for finding maxima and minima

During the second parl of the eightrenth century a large class of optimization problems, the optimization of a uefinite integral, was studted by the Bernoullis and Euler and systematized by Lag'ange This new branch of optimization theory was termed the Calculius 20 viluations, a name suggested by Euler. Previous developments in mechanies suggested to Euler that all natura! phenomeni present extrema, and his later work constitutes an important application of optimization theory to mechanical systems. A complete account of optimization problems in mechanics can be found in [10]. On the solution गf optimization problems subject to subsidiary conditions, a systematic method was given by Lagrange in his Theorie des Fonctions, which detemines a set of necessary conditions for an extremum of a function subjest to equality constraints.

In the nineteenth century the work of Welerstrass of the University of Berlin served to fomalize the theory of inaxima and minima. He was primarily concerned with existence conditions, which had been somewhat disregarded probably due to the fact that in many physical applications either a maximum or a minimum obviously exists. His existence theorem, based on the work of Bolzano, states that: if a function $f(x)$ es continuous in $a=1 . b$, the 2 a aists $;$ and $\xi_{2}, a=\dot{s}_{1}=b, a=\xi_{2} \leq b$, for which the functwin attans its largest value M and its smaklest value m.

Jacos Steiner, another mathematician of the University of Berlin. representative ot the geometric school, solved in the eirly nineteenth century a problem pased earlier by femmat, whicil his had important applications in genera'ized for to location theory ine probiem 15: given three points $A B C$ in a flate, tind a fourth point P such that the sum of the Euclidian distunces trom each or the three points to ρ is minimized. This problem has been widely publicized by Courant and Roboins [11] and has lately been treated by Kuhn in [12] to present an interesting duality concept in non'inetr programming

Another sjurce of solution methods for optimization probiems which has proved eftective is the general theory of inesualities (see for example [6] or [15]) it is worth mentioning that the application is reciprocal: namely, inequitity theorems may be proved with the ainilliary sulution of maximi: on and minimum problem, while certaln optimization problems may be solved by the use of known inequalities This reciprocal character is fomalized by Chrystal in [5]

An inequality that has largely contributed to the method mentioned above and that n_{1}, been a bastic cornerstone of the latest development of optimization thesy, Geomet!': Programing, [7], is the so-called geometre: inequle.ty this inequality states that for a finite set of nonnegative numbe's, the $y^{\prime \prime t}$ thmettio mean is at least as great as the geometric mean. The English mathemati:ian Maclaurin is sredited with the first general pros at the geomet 1 : inequality He enunciated the theorem in the following geometri: form, [8]: if a k inc $A B$ is dusided into any number of part: the protise of all thjse pret: will be a maxumum when the parts ate ciale aning themizl ces the best knjwn andiytical proof of this classical inequa' ty, however, is due to Cauchy, [16]

In the work of Hirris Hancock [12], [?3] published in 1917, we find an excellent summary of what may be considered the state of classical optimization theury up to that time in [13], Hancock indicates that several indicuracies carried through from the developments of Lagrange were corrected when a major revision of the theory of maxima and minima, suggested by Peano or Turin, was carried through by the work of Scheeffer, Stolz and Dontsiner in [13], sections 109-112, he presents the treatment of constrained optimization problems subject to inequality restrictions, and makes use of quadratic slajk variables to reduce the problem to equality constrants

B. 3 modern pertiod first octade

if is during the modern perisd that the theory of maxima and minima has been widely orsadened and given the now generally accepted name of Optumciat...t ri, , A. Primar'ly responsib!e for such a task are the Anerican sientists ific illed on the development of the theory during and after world war 11

The modern period of optimization theory (or ", enalssance", as Nemhauser [17] Itkes to put 1t), viarted in 1941 with G Dantzig's Simplex method for the solut: an af linear programs in the iwo decades since that event, the development , jutinization theory has been extemely frutiful in troth pure analythat ie na ques giv dupl'earions to the managerial sciences, the millitary. enyineting, thit the physical selences

As in various other fields, the substantial new developments that took place in the midde fifties are due in great part to the sdvent of the digital :omputer as a common tool in scientific research and development. This ract may very well lead in the future to the study of the history of s:iences by dividing it into two parts: before the computer and after the computer This is no less true in the case of optimization theory.

The first decade of the modern period, 1947-1957, is characterized by the formal solution of the linear programing problem and the rigorous analysis of its underlying mathematical theory The work performed during the two years 194;-949 was pesented at the n-w nisior: Ciales Commission conferense in Chisago in 1949, and selected papers were pubilsned in Activaty Analy: $:=$ of Paduitıon and Allocation, edited by T. C. Koopmans.

A number of applications in business and industry followed, associated with the names of Charnes and Cooper, who published with Henderson in 1953 what constitutes the first textbook on the subject matter [18]. The book of Gass [19], although published in 1958, may also be considered a product of the early developments of linear programming

The principles of the mathematical theory, as well as the statement of duality, were laid down by von Neumann. The rigorous studies on duality and linear inequality theories were carried out and published in the work edited by H. kuhn and A Tucker of the Princeton school in 1556 , linear inequalctie: and Repated Systems

The success and achievements of this decade stem largely from the development of computer codes for the solution of linear programs which bridge the gap between theory and practice and open a wide avenue cf applications

Almost in parallel with linear programing, R Bellman [20], S. Dreyfus [15] and others have developed another powerful optimization technique, dyrima ptuq.oinchg, of par:icular appli=ation to preblems of optimal control and multistage decision processes

For a complete drcount of the Dackground of and contributors to the modern developinent of mathematical programming, the reader is referied to Dantzig's own discunt, [21]

B. 4 MODERN PERIOD. SECOND DECADE

The second detade of zic losern period has been more prolific by far in the developmant ot new methodologies of optimization it has seen the verification of Dantzig's prediction in his opening address to the Third Symposium on Mathematica! Programing held in Santa Monica, California, in 1559, [22]: "Todzy, we who are gathered here are about to witness the start of an explosion "

We shall mention briefly the highlights of such accomplishments and the principal contributors to each field.

The special unmodulaucty property of certain classes of linear programs observed by Dantzig [22], has been a keystone of the development of network flow theory The principal contributors have been ford and Fulkerson [23], [24] who proved the maximum-flow-minimum cut theorem for homogeneous commodity flow in networks; Berge [25] with his rigorous work on graph theory; and Kuhn [26] with his work on iunbinatorics and the assignment problem. Generallzations of network flow theory have been made by Gomory and Hu [27] on multi-terminal flows and by jewell [28] on multicommodicy flow problems

In disciete and integer programming, this decade has seen the systematic development of cutting plane methods by Gomory [29], and the so-called brancin ard bjund techniques by Land and Doig [31]. Little et al. [30], and Balas [71], (ct Cnapter l!) For detalad information on the subject, the reader is referred to the excellent work uf Balinskt [32] which constitutes an exhaustive survey of integer programming

Pressed perhaps by the growing number oi applicacions with the everincreasing sizes of prob: 's, particular attention was given, starting around 1959, to the exploitation of special structures presented by certain classes of problems Fiom these studies evolyed the Decomposition Principle of Dantzig and Wolie [33], without a doubt, a major contribution to the operctional solution of linedr programs Other types of fartitioning algorithms have been proposed by Benders [34], falas [69], Rosen [70], and others

In the area of stochastic programing, initiated by the two-stage mode! of Dantzig [35] and the work of Tintner [36], much remains to be investigated ine last ten yedrs have witnessed the work of Charnes and

Cooper and their chance constrained mode! [37] as well as the most important work of Madansky [38], [39]. Of special interest in the last few years is the work of Dantz1g [40], Van Slyke [41], and Wets [42] on the integration of mathematical programming and optimal control theory, and the application of the two-5tage approach of stochastic programming to the latter. As Madansky [43] puts $1 t$, the risk introduced into the programming problem has to do witn the probability distribution of the random variables of the problem when these are completely known. The uncertainty arises when the probability distribution is known in form but one or more parameters are unknown An important aspect likely to be developed in the future is the ! $\cdots=1 .: t \cdot$ of of Bacisian coniepts in the multistage models, providing the capability of updating the probability distributions associated with the problem ds more information is available in the process.

The remaining topic, and its basi: theoretical paper by Kulin and Tucker in 1951, [44], generalizing Lagrange's method for the case of inequality constraints, is the topic of nonlinear progranming. Approximate solution methods were developed during the first decade by Chames and l.emke [45] and Dantzig [46] The special case of quadratic programming has teen well-studied by Beale in 1955 [47], Frank and Wolfe [48], arid Wolfe [49]. Other solution techniques of classical nature known as gradient methods dating back to Cauchy, were consolidated in the early book edited by Arrow, Hunwicz and Uzawa [50] and the later work of Lemke [51], Rosen [52], Zoutendijk [53], Davidon [54], Doerfler [55], and others
from the field of numerical analysis several methods for unconstrained optimization have seen developed in the sixties, and in several instances they have been generalized for handing constraints of the indirect optimization type we mention the work of fletcher and Reeves [56]. The direct search methods are based generally on the work of Hooke and deevas [58], and the random search methods on the work of Karnopp [59] and Brooks [60].

As a final remark on nonlinear programming, we mention again the latest development that seems to be a very promising optimization tool for eligineering design, constituting a generalization of the use of inequalities in the solution of extremum problems ihe work has been given the name of ciomitial fogtameng by its developers, Zener. Duffin and

Peterson, 1967, [7], and it deals with the optimization of unconstrained or constrained "possnomials" (positive polynomials). It has already been generalized for the case of negative terms by Passy and Wilde, [61].

In all, the difficult field of nonlinear programing has not yet yielded to a systematic treatment; we feel that a unifying theory remains to be presented

Of the text books of the second decade, we mention the two books of Hadley in innear and nunlinear programming [62], [63]. The latter, if perhaps not a complete or perfectly orgarized work, is the first general text in this area. The book of Danizig [21], that of Vadja [64], and probably the best text so far in linear programming, the translation by Jewell of Simnonard's textbook [65], also were published in this period. Finally, we mention the book of Wilde and Beightler [61] and the book on nonlinear programming edited by Abadie [67].

B. 5 FUTURE RESEARCH

The Sixth international Symposium on Mathematical Programming that took place at Princeton in August 1967, marks the beginning of the third decade of research and development on optimization theory. From the work presented there, it is possible to infer which are tie currents of research likely to be developed in the near future. Although substantial research seems to be underway in most areas of optimization theory, we feel that special effort is being devoted to the following areas of research.

The field of discrete linear programing is very likely to develop rapidly, as it is riow provided with a duality theory analogous to its continuous counterpart, developed by Balas [72]. Also, important contributions have been made by Balinski [73] on a pair of related problems known as the maxumum matio and the munumum covereng probsems. Primai-rual methods are therefore likely to be developed which might be of special use. for example, in network flow tneory for problems involving networks with disjunctive arcs (1 e. . flow either zero or at upper bound). Such ne'work models are particularly sulted for solvinç the class of problems treated in Chapters III and IV. The author is currently engaged in this specific problem.

In nonlinsar programming, more and more applications in the context of engineering design seem likely. Also, theoretical extensions of geometric programming such as the one presented by Auriel and Wilde [74] on stochastic geometric progranming, may be expected. The same may be said about the important toplc of control theory. Finally, we feel that the efficient exploitation of highly-structured optimization models will necessarlly lead to new schemes for solution of large-scale problems.

To close this appendix we shall mention that the development of integrated oftimization systems, employing new computer tecinology and the wealth of optimization techniques currently available, holds great promise in the solut'on of la'ge-scale optimum design problems. The need for powerful synthesis algorithms such as those mentioned in the introductory chapter of this work will contribute to this development.

B. 6 NOTES TO APPENDIX 9

[1] Cantor, M., Vorlesungen über Geschichte der Mathematik, Vol. I, Leipzig, 1900, p. 252.
[2] Rouse Ball, W. !', A Short Account of the History of Mathematics. Dover Publications, Inc., New York, 1060.
[3] Ver Eecke. P., Pappus D'Alexandrie, la Collection Mathématique, Desclé de Bouwer et Cie., Paris, 1933.
[4] Heath, T. L., The Thirteen Books of Euclid's Elements, Vol. II, Dcver Publications, Inc., New Ycrk, 1956.
[5] Chrystal, G., Algebra, Part II, A. and C., Black, London, 1900, pp. 52-55.
[6] Hardy, G. H., J. E. Littlewood, and G. Polya, Inequalities, Cambridge Uriversity Press, England, 1959.
[7] Duffin: R. J., E. L. Pexerson, and C.. M. Zener, Geometric Programing, John tilley \& Soris, New York, 1967.
[8] Mac'aurin, C., "Concerning the routs of equations, with the cemonstration of other rules in 3lgebra': Phil. Transactions, 36, pp. 59-96, 1729.
[9] Beli, [. T., The Development of Mathomatics, McGraw-Hill, Inc., New York, 1940.
[10] Castig:1a:0, C. A. P., The Theony of Equilibrium of Elastic Systems and ets Applecations. Dover Publications, Inc., 1967.
[11] Courarit, R., and H. Robbins, what is Mathematics?, Oxford University Press, New York, 1941.
[12] Kuhn. H. W. "On a Pair of Duai Nonlinear Programs", in Nonfinear Programing, J. Abadie (ed), Interscience Pubilishers, John Wiley, Inc., New York, 1967.
[13] Hancock, H. Theory of Maxima and Mimeria, Dover Publications, Inc. . $i 960$.
[14] \qquad , Lectuies on the Calculus of variacions, Bulletin of rizthemat!cs. No 1. University of Cincinnati, Ohio, 1904.
[15] Beckenbach, E, and R Bellman, An Introduction to Inequalities, Random House, 1961
[16] Cauchy, A. L. Cuurs d'Analyse de L'Ecole Royale Pclytechnique, (Analyse Algéorıque), De L'Imprimerie Royale, 1821, pp. 375-377.
[17] Nemhauser, G , Introduction to Dunamec Programing, John Wiley \& Sons, Inc, New York, 1966.
[18] Charnes, A. W W. Cooper, and A. Henderson, An introduction to Lenear Programing, Johr Wiley \& Sons, Inc., New Yurk, 1953.
[19] Gdss, S J, Linear Programming: Methods and Applccaicions, McGrawHill 3ook C.c. Inc. Nev Yitk, 1958.
[20] Bellman, R, Dynamec Piograming, Princeton University Press, Princeton, New Jersey, 1957.
[21] Dantzig, G ì , Linear Programing anci Extensions, Prificeton Univers:ty Press, Princeton, New isrsey, 1963.
[22] Dantzig, G. B., "Application of the Simplzx Method to a Transportation Probiem" : in T. C. Koopmans (ed.: Activity Analysis ón Production and Aekocation, John Wiley \& Sons, inc., New York, 1951, pp. 359-373.
[23] Ford. L. R., and D. R. Fulkerson, "Maximal F'ow Through i Network", The RAND Corporation, Research Memorandum RM-1400, Novemier 19, $195 \epsilon_{1}$.
[24] \qquad - FLows in Networks, The RAND Corporation, Report R-375, December 20, 1960 Publiched by Princeton University Press, New Jersey, 1962.
[25] Berge, C, Theonce des Graphes st ses Applecctions, Dunod, Paris, 1958.
[26] Kuhn, H W., "The hungarian Method for the Assignment Problem", Naval Res. logest Quart., Vol. 2, 1355, pp. 83-97.
[27] Gomory, R E, and T. C. Hu, Multi-teminal Network Flows*, I.B.M. Research Report, 1960.
[28] Jewell. W. "Optimal Flow Through Networis", Interim Technical Report No 8, Massachusetts Institute of Technology, Cambridge, (Mass.). 1958
[2] Gomory, R, E., "Essentials of ar. Algorithm for Integer Solutions to Linear Programs", Eull. Amer. Math. Soc., Vo1. 64, No. 5, 1958.
[30] Little, J D i. . K G Murty, D. W Sweeney, and C. Karel, "An Algorithm for the Traveling Saiesman Probiem", Operations Research, Vol. 11, 1963, pp. 972-989.
[31] Land, A. H and A. G. Dolg, "An Automatic Method of Solving Discrete Programing Problems", Esenmztrica, Vol. 28, 1960, pp. 497-520.
[32] Balliski, M L., "Integer Programming: Methods, Uses, Computation", management Sicence, Vol. 12, No. 3, November 1965, pp. 253-313.
[33] Dantzig, G B and ? Wi'te, "A Decomposition Princip?e for Linear Programs", RAND Faper P-1544, November 1958.
[34] Benders, J. F. "Partitioning Procedures for Solving Mixed-Variables Progranming p-oblems", Numeusche Mathematik, Vol. 4, 1962, pp. 238-252.
[35] Dantzig, G B , "Linear Drogramming under Uncertainty", Management Science, vol 1, 1955, pp. 197-206.
[36] Tintner, G, "Stochastic Linear Programing with Application to Agricultural Economics", Second Symposiom on Lixear Programing, Nat Bureau of Standards, Washington, O. C., Vol. 1, 1955 , pp. 157-228
[37] Shames, A and W. W. Cooper, "Chance-constrained Prograraing", Maragement Sccence, Yo1. 6, 1959, pi. 73-79.
[38] Madansky, A , "Some Results and Problems iti Stochastic Linear Pregram:ng", The RAND Corporation, paper P-1596, J3nuary 19, 1959.
[39] \qquad , "Inequalitias for Stochastic Linear Programing Problems". Management Seceice. Vol. 6, i960, pp. i97-204.
[40] Dantzig. G B . "Linear Control Processes and Mathematical Programing", J SiAM, vo' 4, No 1, 1966, pp. 5j5-60.
[41] Van slyke, R. "Programing Under Uncertainty and Stochastic Optinal Control", J 5lim Control, Vol. 4, No. 1, i966, pp. 179-193.
[42] Wets. J B .'Programing under Uncertainty: The Equivalent Convex Pragrom", J Slall Appe Nath., Vol. 14, No 1. 1966. pD. 89-105.
[43] Madansky, A. "Linear Programming under Uncertainty", in Recent Aduances in Mathematical Piognioming, R. L. Graves and P. Wolfe (eds.), McG:aw-Hill Bcok Company, Inc., New York, 1963.
[44] Kuhn, H W. and A. W. Tucker, "Nonlinear Programming", in J. Neyman (ed.), Proceedings of the Second Barkeley Symposium on Mathrmatical Statistics and Probability, U. of California Press, Berkeley, Calif, , 1951, pp. 481-492.
[45] Charnes, A. and C. Lemke, "Minimization of Nonlinear Separable Convex Functionals", Naval Research Logistics Quarterly, No. 1, 1954, pp. 301-312.
[46] Dantzig, G, B., "Recent Advances in Linear Programming", Management science, Vol. 2, 1956, pp. 131-144.
[47] Beale, E. M. L., "On Minimizing a Convex Function Subject to Linear Inequalities", Journal of the Royal Statistical Society (B), Voi. 17, 1955, Fp. 173-184.
[48] Frank, M. and P Wolfe, "An Algorithm for Quadratic Programming", Naval Reseancín Logistics Quarteuly, $\because 11.3,1956$, pp. 95-110.
[49] Wolfe, ? , "The Simplex Method f,r Quadro ${ }^{+}$ic Proarramming", Econometreca, Vol. 27, No. 3, 1959, pp. 382-398,
[50] Arrow, K. J., L. Hurwicz, and H. Uzawa, Studies in Linear and NonLenear Prigramang, Stanford University Press, Stanford, Calif., 1958.
[51] Lemke, C. "The Constrained Gradient Method of Linear Programming", Journui of the Socucty for Industrual and Applicd Mathematics, Vol. 9, pp. 1-17
[口2] Rosen, J., "The Gradient Projection Method ior Nonlinear Programing. Part 1 Linear Constraints", Jourmie os the Society for Industrial and Applied "athematice, Vol. 9, 1960, pp 181-217.
[53] Zoutendijk. G. Methuds of Feasible Directions, Amsterdam: Eisevier, lous.
[54] Davidon, W C. "Variable Method for Minimization", Argenne Natl. Lab. ANL-5990 Kev. Univ of Chicago. 1959
[55] Doertler, T. E., "PARTAN, Minimization by Method of Parallel Tangents", Iowa State University, Internal Memorailum, April (1964).
[56] Fletcher, R and C. M. Reeves, "Function Minimizatior by Conjugate Gradients", The Computer Jsurnal, Vol. 7, 1964, pp. 143-154.
[57] Powel!, M. D. J., "An Effisient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives", The Computer Joinnal, Vol. 7, :964, pp. 155-162.
[58] Hooke, R. and T. A, Jeeves, "'Direct Search' Solution of Numerical and Statistical Problems", J. Assoc. for Comp. Mach. 1961, pp. 212229.
[59] Karnopp, D. C. "Random Search Techniques for Optimization Problems", Automatica, Vol ?, 1963, pp. 111-121.
[60] Brooks, S. H., "A Discussion of Randan Methods for Seeking Maxima", Operations Researcin, Vol. 6, 1958, pp. 244-251.
[61] Wilde, D. J. and C S. Beightler, Foundations of Optimization, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1967.
[62] Hadley, G. Lenear Programming, Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, 1962.
[63] \qquad , Nonlinear and Dynamic Programming, Addisen-Wesley Publishing Company, Inc., Reading, Massacilusetts, 1964.
[64] Vajda, S., Mathomatical Programming, Hddison-Wesley Publishing Company, Inc, Reading, Massachusetts, 1961
[65] Simmonard, M, i,near Programirig, W. J Jewell (translator), Prentice-Hall. Inc, Englewood Ciiffs, New Jersey, 1956.
[66] Leon, A, "A Classical Bibliography on Optimization", in Recent Advances in Optimization Techimques. A. Lavi and t. P. Vog 1 (eds.), Jehn Wiley \& Sons. 1966.
[67] Abadie, J (ed), Noneinear Progromine, North-Holland Publishing Co., Amsterdam and Juhn Wiley \& Sons, Inc., New York, 1967.
[68] Kariin, S., Mathematical Methods and Theu iy an Gomes, Programing, and Economies, Vol. 1, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1959.
[69] Balas, E . "An Infeasibility-Pricing Decomposition Method for Linear Programs", Operations Researah, Vol. 14, 1966, pp. 847-873.
[70] Rosen, J. B., "Convex Partition Programming", in Recent Advances in Mathematcial Programing, R. L. Graves and P. Wolfe (eds.), McGraw-HII: Book Company, Inc., New York, 1963.
[71] Balas, E.. "An Additive Algorithm for Solving Linear Programs with Zero-One Variables", Operations Research, Vol. 13, 1965, pp. 517-546.
[72] \qquad , "Duaity in Discrete Programing", Technical Report No. 67-5, Operations Research House, Stanford University, Juiy 1967.
[73] Balinsk1, M. "Maximum Matching, Minimum Covering, and Duality", Sixth International Symposium on Mathematical Programming, Princeton, August, 1967
[74] Avriel, M. and D. J. Wilde, "Stochastic Geometric Programming", Sixth International Symposium on Mathematical Programming, Princeton, August 1967.
[15] Dreyfus, S. E., Dyname Programing and the Calculus of variations, The RAND Corporation, R-4\&1-Pr, August, 1965.

BIOGRAPHICAL NOTE

Felipe Ochoa-Rosso was born c.7 October 31, 1938s in Guadalajara, México. He received the degrees of Ingeniero Civil with "Mencion Honorffica" in September 1962 and of Maestro en Ingeniería in August 1964, from the Universidad Nacional Autonoma de México. For his undergraduate work he received the "al Meritus" madal from the International Rotary Club, (México City), and upon his graduation the Colegio de Ingenieros Civiles de México bestowed upon him an award for being the "mejor pasante" of the School of Engineering zlass of 1956-1960.

On a Technical Fellowship from the French Government, the author spent the year 1962-1963 in Paris, studying computer systems with the Compagnie des Machines Bull. Upon his return from Paris he continued his work with Bull as their assistant director of the Scientific Department of the Mexico City branch.

The four years prior to commericing his doctoral program at the Massachusetts Institute of Technology in 1964, the author was a Professor of the Faculty of Engineering, National University of Mexico. Since 1966, as an Instructor of the Civil Engineering Department at M.I.T., he has been teaching courses on Optimization Theory and participating in development of a computer software system for an integrated facility for civil engineering. His doctoral program has focussed on three areas: systems engineering and operations research, computer science and transportation systems planning.

The author is a member of Sigma Xi, Chi Epsilon, the Operations Research Socisty of America, the Société des Ingeniéurs Civils de France, the Colegio de Ingenteros Civiles de México, and the Association for Computing Machinery

In August 1964, he married Sandra L. Rosellini of Seattle, Washington. They have two daughters, María Alejandra and Jacqucline Kate.

PUBLICATIONS

[1] On the Theory of Thin Elastic Anisotropic Shells, (in Spanish), C.E. Thesis, National University of Mexico, September 1962.
[2] "Programming Possibilities for Equilibrium Problems in Continuous Media", (in French), paper prepared for the Compagnie des Machines Bull, Paris, April 1963.
[3] Computer A. alyols :ó Earth Dion Stabilety, (in Spanisn). Master of C.E. Thesis, National University of Mexico, Septumber 1964,
[4] "Mathematical Programming in the Optimum Design of Structures", (in Spanish), Professional Paper 13, Massachusetts Institute of Technology, Department of Civil Engineering, presented at the "Reunion Conjunta CICM-ASCE sobre Ingeniería Civil", Mexico City, February 1966.
[5] "The ICETRAN Language", in ICES: Programmers' Reference Manual, Jane C. Jordan (ed.), R67-50, Massachusetts Institute of Technology, Department, of Civil Engineering, October 1967.
[6] OPTECH User's Guide An Optimezation Techniques Subsystem of ICES, with David K. Bivins and Herve Thiriez, Massachusetts Institute of Technology, Department of Civil Engineering, October 1967.

[^0]: Karlin, S., Marthmatical Nethods and Theony in Games, Programing, and Economics, Vol. I, Addison-Wesley, 1959, f. 1.

[^1]: * Duffin, R J., E. L Peterson, and C. M Zener, Geometrec Programing, Joh" Wiley, 1967

[^2]: Although the discussion in iht: chapter is in tems of money allocation, it is in fact applicable to rliocation of a variety of other scarce resources.

[^3]: f_{i} would represent the net present value of investing in project 1 , discounted by the sppropride rate of interest, if the total present value approach of Lorie and Savage is :-ipted.

[^4]: * In the spase that any un of the problem wo:ld produce the same tree. ${ }^{+}$Ir it was, ibeing the bounded node, it would be an optima! solution.

[^5]: * Obviously, no capital outlay may exceed the sum of all the butgets; if so, it may be ruled out of the probiem

[^6]: *The arcs (1,5) e A for which $x_{1 j}=a_{1}$ may be interpreted as prohibited routes if A, is first subtracted from the corresponding nodes : and J

[^7]: * For $n=1$, constraints (6.12) have no particular meaning and may be dropped from further consideration.

